Modeling Consumer Preferences and Price Sensifivities from Large-Scale Grocery Shopping Iransaction Logs

Right Products w. Right Coupons to Right Consumers!

Preference \& Price Sensitivity

Consumer Behavior Model

(preference \& price sensitivity)

O Preference: what kind of products people would like to buy

- Recommender System
- Purchase Probability / Quantity

O Price-sensitivity: what kind of products people would be more likely to buy if the price drops

- Demanding System

O elasticity $=\left(\frac{\Delta \text { Quantity }}{\text { Quantity }}\right) /\left(\frac{\Delta \text { Price }}{\text { Price }}\right)$ or elasticity $=\left(\frac{\Delta \text { Probability }}{\text { Probability }}\right) /\left(\frac{\Delta \text { Price }}{\text { Price }}\right)$

- Price elasticity is usually negative, where larger absolute value -> more price sensitive

Challenges

O Recommender System

- Price is barely considered
- Interpretability
- Economics/Marketing
- Scalability
- Handcrafted consumer segmentation

O By connecting them.
O Interpretable, Scalable, Personalized

Modeling Grocery Shopping Behavior

O INPUT: User ID, Item/Category ID, Features (temporal/geo info., item info.- price!, user demographics, etc.)

- OUTPUT: preference prediction, price elasticity

Method (Preference Scoring Function)

- A Unified Feature-Based Matrix Factorization (FMF): $\operatorname{link}(Y(t))=L(t)=\Phi(t)^{T} \psi^{T}$ price!

Category Purchase

1. Buy or not?
('Logistic Regression')

Product Choice
2. Which product?
('Multinomial Logistic')

Positive Integer $\overline{=}$

Purchase Quantity

3. How many?

Method (Advantages)

Scalable- Inherit the scalability of Matrix Factorization
- Parallel

O Three stages do not share parameters

O Flexible

- Easy to adjust based on conditions
- Personalized

O No need to do consumer segmentations beforehand

Category Purchase

1. Buy or not?

Product Choice
2. Which product?

Purchase Quantity
3. How many?

Experiments (Datasets)

O Dunnhumby (household-level data) [1]
O 531,201 product transactions, 98,020 trips, 799 users, 4,247 products, 108 stores, 104 categories
O Features: price, day-of-week, household demographics, product info etc.
O MSR-Grocery (individual, convenient store)
O 152,021 products transactions, 53,075 trips, 1,288 users, 1,929 products, 55 categories
O Features: price, day-of-week, product info etc.

Results (Preference)

Results (Price Elasticity)

O Product choice is the most price sensitive stage

- Consumers in Dunnhumby (households) are less price sensitive in category purchase,

Case Study: Bacon

X-axis: 10 users (randomly selected)
(a) Category Purchase

Y-axis: 11 bacon products ordered by price (bottom to top)
(b) Product Choice

(c) Purchase Quantity

- Different consumers may have different price sensitivities
- Do category promotions on popular products

Case Study: Bacon

Preference vs Price Elasticity

Case Study: Bacon

Preference vs Price Elasticity

Conclusion and Future

O Three purchase stages
o category purchase, product choice, purchase quantity

- A nested feature-based matrix factorization model (FMF)
- Personalized

O Lots of economic insights

- Coupons are primarily effective "within category"

O Temporal-aware model - long-term purchase patterns

- Complementary and Substitutes
- Optimization strategy to generate personalized coupons so that utilities can be maximized

Thanks!

Mengting Wan (m5wan@eng.ucsd.edu)

