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Marketing Bias

• The same product can be marketed using different human images
• Body Shapes, Genders, Ages, Ethnicity Groups, etc.

• As indicated in many marketing studies, these strategies could affect consumer 
behavior
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A female user wants to buy 
a boxing product
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A male user seeks to buy
a yoga  mat bag

• A common hypothesis (‘self-congruence’) in marketing
• A consumer may tend to buy a product because its public impression (‘product image’) is 

consistent with one’s self-perceptions (‘user identity’)

A. Birdwell. “A study of  the influence of  image congruence on consumer choice.” The Journal of  Business, 1968
E. Grubb and H. Grathwohl. “Consumer self-concept, symbolism and market behavior: A theoretical approach.” Journal of  Marketing, 1967
E. Grubb and G. Hupp. “Perception of  self, generalized stereotypes, and brand selection.” Journal of  Marketing Research, 1968



• Biased interaction dataset
• consumers’ intrinsic preferences (the target of  a RecSys) and marketing 

preferences (confounding factors) are entangled

• Potential marketing bias could be propagated by ML algorithms
• Market imbalance can be worsen – even worse recommendation accuracy in the 

underrepresented market segment
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Female user buying 
a boxing product



• Q1: Does such a marketing bias exist in the input interaction data?

• Q2: How do standard algorithms respond to the biased inputs?

• Q3: How to improve the market fairness of  recommendations?
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• Q1: Does such a marketing bias exist in the input interaction data?
• Observational analysis on two collected e-commerce datasets (ModCloth & 

Amazon Electronics)
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Data Collection
• Modcloth

• Clothing website
• Potential marketing bias

• The body shape (small/large) of  the human 
models in product images

• Amazon Electronics
• Electronic products 
• Potential marketing bias

• The gender (male/female) of  the human models in 
product images

• Users’ rating scores on product items are 
available on both websites
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Small
(XS, S, M, L, XL)

Large
(1X, 2X, 3X, 4X)

Female Male

• Product image group
• Small; Small & Large

• User identity group
• Small; Large

• Product image group
• Female; Male; Female & Male

• User identity group
• Female; Male



Q1: Does marketing bias exist in the input data?

Are user identity and product image correlated to each other in the input interactions?
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𝐻": user identity groups (𝑚) and product image groups (𝑛) are independent in 
terms of  interaction frequency

?



Q1: Does marketing bias exist in the input data?
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Q1: Does marketing bias exist in the input data?
𝐻": user identity groups (𝑚) and product image groups (𝑛) are independent
in terms of  interaction
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Q1: Does marketing bias exist in the input data?

‘Self-Congruency’ pattern is significant
• People are more likely to consume products represented by someone ‘similar’ to 

themselves
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• Q2: how do standard recommendation algorithms respond to the 
biased input data?
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• Predictive Task
• Rating Prediction (sH,I ∶= 𝑓 𝑢, 𝑖 → 𝑦H,I)

• diffR,S = �̅�¬(R,S) − �̅�(R,S)
• > 0: segment (𝑚, 𝑛) is favored by the algorithm 

(smaller prediction error inside the market segment)
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Q2: How do standard algorithms respond to the biased inputs?

(𝑚)

(𝑛)

Y𝒆(𝒎,𝒏)

Y𝒆¬(𝒎,𝒏)

itemCF: B. Sarwar, G. Karypis, J. Konstan, J. Riedl, et al. “Item-based collaborative filtering recommendation algorithms.” WWW’01.
userCF: J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. “An algorithmic framework for performing collaborative filtering.” SIGIR’99
MF: K. Yehuda, R. Bell, C. Volinsky. “Matrix factorization techniques for recommender systems.” Computer (2009).
PoissonMF: P. Gopalan, J. Hofman, and D. Blei. “Scalable Recommendation with Hierarchical Poisson Factorization.” UAI’15.



Q2: How do standard algorithms respond to the biased 
input data?

• diffR,S = �̅�¬(R,S) − �̅�(R,S)
• Market segments are sorted based on their sizes in training data

15

-0.3

-0.2

-0.1

0

0.1

0.2

E
rr

or
 d

iff

Consumer-Product Market Segment

ModCloth (MF)

(L,S) (L,S&L) (S,S) (S,S&L)

-0.1

-0.05

0

0.05

0.1

E
rr

or
 d

iff

Consumer-Product Market Segment

Electronics (MF)

(M,F&M) (F,M) (F,F&M) (M,M) (M,F) (F,F)

male users buying 
products w. female model(s)

ML algorithms generally tend to favor 
dominating market segments



Q2: How do standard algorithms respond to the biased 
input data?

• Electronics: the trend correlates to the deviations of  the real market size 
from the expected market size
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• Q3: how to mitigate such an algorithmic bias and improve the market 
fairness of  recommendations?
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Market Fairness of  Rating Predictions

• Rating Prediction Fairness
• Prediction errors across different consumer-product market segments (𝑚, 𝑛)

are expected to be consistent (𝐻")

• 𝐹-test for statistical independence
• Small between-segment error variation (𝑉)

• Compared to within-segment error variation (𝑈)

• Small F-statistic:  

• 𝐹 = a/(c∗efg)
h/( i fc∗e) – deviation of  the observed errors from 𝐻"

• A metric to evaluate the market fairness of  rating predictions with a tractable 
statistical distribution
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• Matrix Factorization
• sH,I ∶= 𝑓 𝑢, 𝑖 = < 𝜸𝒖, 𝜸𝒊 > → 𝒚𝒖,𝒊
• MSE-based loss function: 𝐿 = ∑ sH,I − 𝒚𝒖,𝒊

-

• Error Correlation Loss

• 𝐿∗ = ∑ sH,I − 𝒚𝒖,𝒊
- + 𝛼𝑳𝒄𝒐𝒓𝒓

• 𝐿vwxx regularizes the correlation between prediction errors and the distribution of  
market segments
• 𝐿vwxx = 𝑉/𝑈, where between-segment error variation: 𝑉; within-segment error variation: 𝑈;

• Reflecting the previous fairness metric – F-stat
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Q3: How to improve the market fairness of  recommendations?



Q3: How to improve the market fairness of  recommendations?

• The proposed framework MF (corr.error) provides a superior recommendation fairness 
without trading-off  much recommendation accuracy
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Better Fairness

Better Recommendation



Takeaway & Future
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• Marketing bias: a resource of  bias for recommendation algorithms
• Possibly due to the ‘self-congruence’ effect in the training data

• Calibrating prediction errors across different market segments leads to better 
recommendation fairness
• Without trading-off  much recommendation accuracy

• Encourage RecSys researchers and practitioners to keep investigating this type 
of  bias
• Better data collection
• Comprehensive user study
• Address in algorithms at scale


