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Abstract

Personalized ranking with implicit feedback (e.g. purchases,

views, check-ins) is an important paradigm in recommender

systems. Such feedback sometimes comes with textual

information (e.g. reviews, comments, tips), which could be a

useful signal to reveal item properties, identify users’ tastes

and interpret their behavior. Although incorporating such

information is common in explicit feedback settings (such

as rating prediction), it is less common when dealing with

implicit feedback, as it is often not available for negative

instances (e.g. there is no review associated with the item

the user didn’t buy). Thus our goal in this study is

to propose a ranking method (PRAST) to incorporate

such personalized, asymmetric textual signals in implicit

feedback settings. We evaluate our model on two real-world

datasets. Quantitative and qualitative results indicate that

the proposed approach significantly outperforms standard

recommendation baselines, alleviates ‘cold start’ issues, and

is able to provide potential textual interpretations for latent

feedback dimensions.

1 Introduction

Implicit feedback (e.g. purchases, views, check-ins) is
widely available in information systems, where users
reveal their preferences through actions rather than
expressing them explicitly (e.g. by providing a rating
score). In addition to user-item interactions, textual
information (e.g. Amazon reviews, Youtube comments,
Foursquare tips) may also be available, and provides
rich context to better predict or explain users’ actions.

Different from item-related textual data (e.g. prod-
uct description, news content), such textual informa-
tion is causal, personal, asymmetric, and rarely studied
in implicit-feedback settings. Contents could describe
users’ personal experiences, their favorite properties of
an item, or suggestions to other users. By definition
such data are only available for positive feedback in-
stances in ‘one-class’ recommendation settings (e.g. re-
view text is never available for items a user hasn’t in-
teracted with). This makes such textual information
difficult to incorporate into implicit feedback settings,
which typically assume that negative instances (or non-
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Figure 1: Illustration of asymmetric textual information
in implicit feedback settings.

interactions) can be treated in much the same way as
positive instances (see Figure 1). Our primary goal in
this paper is to build personalized ranking models from
implicit feedback, resolving this asymmetry issue and
appropriately making use of textual signals.

Personalized Ranking and Implicit Feedback. In
order to provide a personalized ranked list of items to
each user, we need to learn users’ preferences from their
feedback. Explicit feedback interactions (such as star-
ratings) directly reflect users’ preferences regarding each
item, but may be unavailable, or sparse compared to
the space of possible interactions. In such cases, we
might instead rely on implicit signals describing users’
interactions with items. Typically, each time a user
interacts with an item in the system, this is regarded
as a ‘positive’ instance; our goal is then to predict (or
rank) which items they would be most likely to interact
with. However, unobserved user-item pairs cannot sim-
ply be treated as ‘negative’ instances: it could be that
a user is not interested in the item, or that they would
be interested but simply aren’t aware of the item yet.
Therefore, conventional collaborative filtering methods
where the target is to predict a positive or negative sig-
nal (e.g. standard Matrix Factorization [12]) may not
be appropriate. To address this, one-class algorithms
have been proposed [18, 19, 22] where instead of binary
prediction accuracy, ranking measures are applied as op-
timization criteria. For example, Bayesian Personalized
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Ranking (BPR) [18] approximately optimizes a ranking
measure, the Area Under the ROC Curve (AUC). The
principle of this criterion is to promote observed (posi-
tive) items and degrade unobserved (but not necessarily
negative) items by maximizing an objective that sug-
gests that positive interactions should simply be more
compatible with the user than non-interactions.

Incorporating Asymmetric Textual Information.
Textual information associated with user-item pairs
(e.g. review text) has proven helpful when explaining
and predicting explicit feedback (e.g. rating prediction),
particularly on ‘cold’ items [1, 3, 13, 14, 23]. The princi-
ple of these approaches relies on factorizing observed
ratings and modeling review text by linking latent pref-
erence dimensions and topics discovered in text. The
success of these methods motivates us to adopt textual
information in implicit feedback settings. Specifically,
rather than uncovering ‘facets’ from review text that
explain users’ ratings, we would like to use these tex-
tual signals to learn about the types of actions users are
likely to perform. For example, we might wish to un-
cover the aspects of an item from Amazon reviews, or
Youtube comments, which may trigger a ‘purchase’ or
‘view’ action. However, in addition to the label asym-
metry described above, this textual information is also
asymmetric. This means that unlike in explicit feed-
back settings where all responses used for training have
the same side-information, this is no longer the case in
implicit-feedback settings, where such textual informa-
tion is only available for positive user-item pairs. We
address this asymmetry and describe our goal in this
paper as follows:

Goal: Given (asymmetric) textual informa-
tion, we seek to understand users’ inclinations
towards particular kinds of actions, and pro-
vide item recommendations guided by these sig-
nals.

In order to incorporate such textual information and
overcome the challenge of asymmetry, we propose a new
one-class recommendation model – Pairwise Ranking
with Asymmetric Textual Feedback (PRAST), where
we assume: 1) positive and negative items differ in terms
of their compatibility with a given user, which is con-
sistent with the typical pairwise ranking optimization
criterion (e.g. BPR); 2) relevant asymmetric textual
data are consistent among observed positive items, such
that they provide information related to the likelihood
of users’ actions.

The above suggests some form of joint objective,
where our model of users and items should be good
at predicting (or ‘explaining’) observed versus non-
interactions, but should also be good at explaining (in

terms of likelihood or perplexity) the textual informa-
tion associated with positive actions. We apply the
proposed framework on two large-scale datasets and
show that item ranking performance can be significantly
improved by appropriately incorporating asymmetric
textual data. Our experiments reveal that such side-
information not only helps to provide better recommen-
dations, but also can be used to uncover the motivations
behind observed user-item interactions.

2 Related Work

Recommendation with explicit and implicit feed-
back. Traditional models for item recommendation
rely on techniques such as Collaborative Filtering (CF)
to learn from explicit feedback like star-ratings [11].
Although several paradigms for explicit feedback ex-
ist, of most relevance to us are model-based methods
and in particular Matrix Factorization (MF) methods
[12]. Such models have been extended in order to han-
dle implicit feedback data where only positive signals
(e.g. purchases, views, clicks) are observed (i.e., the so-
called ‘one-class’ recommendation setting). Most rele-
vant here are pair-wise methods like BPR-MF [18] that
make an assumption that positive feedback instances are
simply ‘more preferable’ than non-observed feedback.

Textual information with explicit signals. Sev-
eral models exist that incorporate textual feedback to
predict star ratings, including HFT (‘Hidden Factors
and Topics’) [14], JMARS (‘Jointly Modeling Aspects,
Ratings, and Sentiments’) [3], RMR (‘Ratings Meet
Reviews’) [13], FLAME (‘Factorized Latent Aspect
Model’) [23] and SLUM (‘Sentiment Utility Logistic
Model’) [1]. These models differ from each other in pre-
cise formulation, but each essentially assumes that re-
views can be used to determine the ‘aspects’ along which
users rate products, using fewer observations than would
be required to learn these aspects from ratings alone.
This is a natural assumption, as the very purpose of re-
views is to explain the different factors that contributed
to a user’s rating. We rely on a similar assumption,
though the ‘aspects’ we seek to discover should discrim-
inate interactions from non-interactions (e.g. purchases
from non-purchases, views from non-views), and thus
are quite different.

Symmetric and asymmetric information with
implicit signals. Similar to the problem we tackle,
several works have attempted to incorporate side-
information into implicit feedback settings and have
proven helpful when handling ‘cold-start’ issues. Ex-
amples include extensions of BPR, such as Social BPR
(SBPR), which makes use of side information in the
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Notation Description

U , I user set, item set

I+u , I−u positive and ‘negative’ item sets for user u,
I−u = Iu\I+u

i >u i′ user u prefers item i over item i′

b0, bi, bu global, item, user biases

γi,γu item and user latent factors

xu,i user u’s preference score regarding item i

Ru,i,Ru,i,s text corpus of the action associated document

and a sentence s in this document

θu,i topic distribution of the review text for item
i from user u

φ0,φk word distribution for the background model

and the topic k

ks latent variable of the assigned topic for sen-

tence s

Table 1: Notation.

form of social signals [25], where friends’ activities act as
a form of implicit signal that guides users’ actions; and
Visual BPR (VBPR), where visual attributes are used
to estimate item ‘facets’ that guide users’ purchases [7].
In particular, some studies have been proposed to incor-
porate item-associated textual content (e.g. the content
of an article) into this setting where topics in text are
used to guide latent item dimensions [21,24].

Although such information (social networks, im-
ages, article texts) have been shown to be effective in
such cases, this is different from the setting we study
as it does not exhibit the same asymmetry : the feed-
back in question is ‘static’ (images and article texts are
used to extract item features, social networks are used
to extract user features), and depends on the user or
the item only, not the user-item interaction.

3 Background

In order to gradually construct our new framework—
Pairwise Ranking with Asymmetric Textual Feedback
(PRAST), we first introduce the traditional latent
factor model and the Bayesian Personalized Ranking
(BPR) framework as background information. Nota-
tion used throughout the paper is provided in Table 1.

Latent Factor Models. A number of modern recom-
mender systems are built on top of latent factor models
[12]. In this model, a user u’s preference score regarding
an item i is defined as

(3.1) xu,i = b0 + bi + bu + 〈γi,γu〉 ,

where b0 is a global offset, bi and bu are item/user bi-
ases, and γi and γu are K-dimensional vectors, which
capture each item’s latent ‘properties’ and users’ ‘prefer-
ences’ toward those properties. Here 〈·, ·〉 indicates the
inner product such that 〈γi,γu〉 essentially captures the

‘compatibility’ between user u and item i, i.e., how well
the item properties (γi) match the corresponding user’s
preferences (γu). This preference score xu,i can approx-
imate a rating in explicit-feedback settings or can be
correlated to an action probability in implicit-feedback
settings, as described below.

Bayesian Personalized Ranking. Suppose >u is the
desired preference ranking for user u, and I+

u and I−u are
the positive item set and the unobserved (or ‘negative’)
item set. Then our training data for ranking based
on implicit feedback consists of a sequence of (user,
positive-item, negative-item) triples, i.e.,

(3.2) DS = {(u, i, i′) | u ∈ U ∧ i ∈ I+
u ∧ i′ ∈ I−u }.

In the BPR framework [18], the following ranking-
based likelihood is optimized:

(3.3)
∏
u∈U

P (>u |Ω) =
∏

(u,i,i′)∈DS

P (i >u i
′|Ω),

where Ω is the parameter set. Here i >u i
′ indicates that

user u prefers item i over item i′ and its probability is
usually defined via a sigmoid function:

P (i >u i
′|Ω) = σ(xu,i − xu,i′) =

1

1 + e−(xu,i−xu,i′ )
,

where the latent factor model (3.1) can be applied for
the preference score. xu,i − xu,i′ then corresponds to a
pairwise difference in compatibility between the positive
and negative items (note here that when ranking items
for each user, the global bias b0 and user bias bu
cancel out between xu,i and xu,i′). By optimizing the
log-likelihood (3.3), BPR approximately optimizes a
ranking measure (the AUC) directly.

4 Pairwise Ranking with Asymmetric Textual
Feedback

In this section, we present a new one-class recommen-
dation model—PRAST, where an enhanced pairwise
ranking optimization criterion is applied to handle ev-
idence such as (asymmetric) textual information, and
a relevance-aware topic model is attached to the latent
factor model so that text can be incorporated adap-
tively.

Overview of the Framework. In order to construct
a ranking framework with asymmetric textual informa-
tion, we consider the likelihood of the desired rankings
as well as the ‘appearance probability’ of the observed
‘positive-only’ text. Then we consider the following
training data which consists of a set of (user, positive-
item, negative-item, evidence) quadruples, i.e.,

(4.4) DS = {(u, i, i′, Eu,i) | u ∈ U ∧ i ∈ I+
u ∧ i′ ∈ I−u }.
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Here the evidence Eu,i could be represented either via
the ‘positive-only’ text corpus Ru,i, or empty (i.e. no
textual information associated with the observed ac-
tion). Then we wish to maximize (the logarithm of)
the following likelihood:∏

(u,i,i′,Eu,i)∈DS

PΩ(Eu,i|i >u i′)︸ ︷︷ ︸
likelihood of the evidence

PΩ(i >u i
′)︸ ︷︷ ︸

pairwise ranking

.

We use PΩ as shorthand to denote the probability given
the parameter set Ω. The latent factor model (3.1) and
the sigmoid transformation in BPR (3.3) can be applied
to model PΩ(i >u i

′) as well. Thus we naturally inherit
the optimization principle from BPR: compatibilities
between positive and negative instances can be fairly
compared through latent factors and the difference can
be maximized. If there is textual information associated
with the triple (u, i, i′) (e.g. a review was left after user
u purchased a product i), we define the likelihood of
asymmetric evidence Eu,i as a monotonic function of the
likelihood of the interaction-associated text document
Ru,i, i.e.,

(4.5) PΩ(Eu,i|i >u i′) = PΩ(Ru,i)κ.

Here κ is a positive hyperparameter which is used to
control the confidence of the underlying language model
for Ru,i. In order to use such textual information to
explain and facilitate pairwise ranking, we need to fuse
latent dimensions in (3.1) with the language model.
Thus in (4.5), larger κ indicates higher confidence that
observed textual data are bonded to motivations of
the target action. As κ → 0, PΩ(Ru,i)κ → 1 for all
Ru,i, which implies textual data are ignored and only
the pairwise ranking is considered during the training
process. Specifically, we define PΩ(Eu,i,i′ |i >u i′) = 1
if there is no textual information provided. Because of
the asymmetry of Ru,i, we always assume there is no
additional information at test time and the predictions
we can provide are purely a function of the user and
item representations, i.e., the preference scores xu,i as
determined by the latent factor model (3.1).

Language Model. Topic models have proven a popu-
lar approach to incorporate textual information into la-
tent factor models, by combining Latent Dirichlet Allo-
cation (LDA) [2] with latent factor models [3,13,14,23].
Just as Latent Dirichlet Allocation uncovers hidden di-
mensions in documents, when combined with a latent
factor model it can uncover those dimensions that ex-
plain variance in people’s opinions as represented by
rating scores. Based on a similar principle, in implicit
feedback settings, we consider distinguishing whether
a sentence is relevant to the target behavior and only

attach the relevant part to the latent preference dimen-
sions, so that these relevant contents can be consistently
and adaptively explained among positive items while
others might be explained by a background model. We
gradually build the language model as follows.

• Sentence Relevance. For each sentence s in a
document Ru,i, we introduce another binary latent
variable ls to model sentence relevance.1 We assume
that PΩ(ls = 1) = PΩ(ls = 0) = 0.5. Then the corpus
likelihood in (4.5) can be modeled as

PΩ(Ru,i) = C
∏
s

(
lsP

(1)
Ω (Ru,i,s)+(1−ls)P (0)

Ω (Ru,i,s)
)
,

where C is a constant and P
(l)
Ω (Ru,i,s) is shorthand

for PΩ(Ru,i,s|ls = l).

• Topic Distribution. For the relevant textual con-
tents (i.e. ls = 1), similar to LDA, we have a K-
dimensional topic distribution θu,i for each document,
which indicates the probability that a particular word
in this document discusses a particular topic. We ap-
ply the item latent factor γi in (3.1) and introduce
another user-specific non-negative K-dimensional pa-
rameter αu to model this distribution as follows:

(4.6) θu,i,k =
exp(αu,kγi,k)∑K

k′=1 exp(αu,k′γi,k′)
,

where αu,k ≥ 0,∀k. Recall that γi captures item i’s
‘properties’ in the latent factor model, and here we
use αu to capture variation due to user u’s writing
style (i.e., a user-specific topic weighting determining
which topics this user prefers to write about in their
reviews). By applying such a transformation, we are
assuming that if an item exhibits certain properties
which may motivate users to take actions (i.e., high
γi,k), then these aspects should be reflected in users’
reviews, so long as that user has a tendency to discuss
them (high αu,k). This modeling approach is an
enhanced version of that of the HFT model [14]
proposed for explicit-feedback settings, where αu,k is
assumed to be constant among all users and all topics.

• Topic Assignment. Furthermore, we assume that
words within a sentence s discuss the same aspect ks
(i.e., topic) of the item. Such a sentence-level topic
is generated from a multinomial distribution with its
corresponding review topic parameter θu,i. Note here
the each sentence-level topic ks is a latent variable
in the probabilistic model, which is usually estimated
through sampling approaches [17] or variational infer-
ence [20].

1ls = 1 indicates this sentence is relevant to motivations of the
observed user-item interaction; ls = 0 otherwise.
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Figure 2: Plate-notation illustration of the proposed
PRAST model.

• Word Distribution. Suppose W is the dictionary
used in the model, β0,βk, k = 1, . . . ,K are W -
dimensional vectors where W is the dictionary size.
Then given the sentence relevance and topic assign-
ment, we could generate the complete review textRu,i
from word distributions. Specifically, for a relevant
sentence, given the topic assignment ks for a word
wn, its likelihood can be modeled as

φwn,ks := PΩ(wn|ks, ls = 1) =
exp(βks,wn

)∑
w′∈W exp(βks,w′)

.

For an irrelevant sentence, we have the following
background word distribution:

φwn,0 := PΩ(wn|ls = 0) =
exp(β0,wn)∑

w′∈W exp(β0,w′)
.

Therefore, the final likelihood of textual information in
each sentence is

PΩ(Ru,i,s) = ls
(∑
ks

θu,i,ks
∏
w

φw,ks
)
+(1−ls)

(∏
w

φw,0
)
.

The graphical representation of the complete model is
included in Figure 2.

Model Inference. We apply an EM-style variational
inference method to fit the text term PΩ(Ri,u|i >u i′)
and the ranking term PΩ(i >u i′) jointly, which is
similar to the techniques applied in previous textual
model studies [4, 23]. To do so we introduce an in-
termediate parameter τs for sentence relevance indi-
cator ls, which can be easily updated in the E-step:

τs = P
(1)
Ω (Ru,i,s)/(P (1)

Ω (Ru,i,s) + P
(0)
Ω (Ru,i,s)). Then

our target is to maximize the following log-likelihood
for each sentence:

(4.7) τs logP
(1)
Ω (Ru,i,s) + (1− τs) logP

(0)
Ω (Ru,i,s)

Then we introduce another set of K-dimensional vari-
ational parameters πs to approximate the distribution
of the sentence topic assignment ks, i.e., the variational
probability is q(ks = k|πs) = πs,k, with the constraint∑
k πs,k = 1. Instead of optimizing the original text-

related log-likelihood logP
(1)
Ω (Ru,i,s), we maximize the

lower-bound of this log-likelihood as

Eq logP
(1)
Ω (Ru,i,s)− Eq log q(ks|πs)

=
∑
k

πs,k

(
log θu,i,k +

∑
wn∈Ru,i,s

log φwn,k − log πs,k

)
=
∑
k

πs,k

(
log θu,i,k +

∑
w∈W

logNs,wφw,k − log πs,k

)
,

where Ns,w is the frequency of word w in sentence s.
In practice, we first fix all other parameters and up-

date τs and πs,k ∝ θu,i,k
∏
w φ

Ns,w

w,k . Then we fix τs, πs,k
and update other parameters to maximize the above
lower-bound plus the log-likelihood of the background

language model logP
(0)
Ω (Ru,i,s) and the pairwise rank-

ing logPΩ(i >u i
′).

Gaussian priors are included for all parameters in
Ω, leading to a standard `2 regularizer. In addition, we
apply the ADAM optimizer [10], a stochastic gradient-
based algorithm. Recall that our primary goal is to
produce rankings that are consistent with our training
data (i.e., positive instances should be ranked highly).
Thus we need to be careful not to overfit too much to
side information, which would sacrifice ranking quality.
Rather, the textual information is intended to regularize
or ‘reinforce’ the model’s latent factors, in order to
lead to better ranking performance. Therefore, during
stochastic optimization, we periodically compute the
ranking measure (i.e., the AUC) on a held-out validation
set. We report results on the test set for the model
parameters, hyperparameters, and the iteration, leading
to the best performance on the validation set.

5 Experiments

We evaluate the proposed PRAST model for person-
alized item ranking on two large-scale datasets where
asymmetric textual feedback is available. In particular,
we evaluate 1) whether overall item rankings can be es-
timated more accurately by leveraging such signals; 2)
whether cold start issues for items can be alleviated;
3) whether latent preference dimensions can be reason-
ably explained by textual information and motivation-
relevant topics can be discovered.

Datasets. We consider two large-scale datasets—
Amazon [15] and Google Local [6], where both review
text and ratings are available. Recall that we do
not use rating information (instead we are trying to
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Amazon #act. #users #items
#act.

/item
#sent.

#sent.

/act.
Google Local #act. #users #items

#act.

/item
#sent.

#sent.

/act.

Instant Video 135K 29,756 15,149 8.92 608K 4.50 Colorado 72K 10,512 27,984 2.57 233K 3.24
Office Prod. 287K 59,858 60,641 4.73 1,540K 5.37 North Carolina 73K 10,644 33,071 2.21 214K 2.93

Digital Music 352K 56,814 156,503 2.25 1,821K 5.18 Washington 78K 9,699 29,644 2.63 194K 2.49

Baby 380K 71,826 42,523 8.94 2,071K 5.45 Illinois 135K 17,098 42,329 3.18 377K 2.80
Pet Supplies 478K 93,336 70,105 6.82 2,331K 4.88 Florida 182K 28,898 81,205 2.24 539K 2.96

Grocery 509K 86,400 108,467 4.69 2,390K 4.70 New York 225K 22,199 61,790 3.65 579K 2.57
Health 1,073K 205,704 163,717 6.56 5,126K 4.78 Texas 266K 35,547 96,597 2.75 761K 2.86

Cell Phones 1,079K 245,110 190,089 5.67 4,664K 4.32 California 430K 48,957 145,779 2.95 982K 2.28

Total 4,293K 848,804 807,194 5.32 20,550K 4.79 Total 1,461K 183,554 518,399 2.82 3,879K 2.66

Table 2: Basic dataset statistics: numbers of actions (i.e. reviews), users, items, sentences, actions per item,
sentences per document.

predict what items a user would ‘interact’ with, such as
what business they would visit), except when adopting
explicit-feedback models for comparison.

• Amazon. This is a large-scale dataset collected
from Amazon.com [15]. We consider products in
eight top-level categories: Instant Video, Office

Products, Digital Music, Baby, Pet Supplies,
Grocery and Gourmet Food, Health and Personal

Care and Cell Phones and Accessories. We dis-
card users with fewer than 3 associated actions
(i.e., reviews) in total leaving around 4 million ac-
tions across 807 thousand items and 849 thousand
users. Textual information is available for almost all
actions. Models are built independently for different
categories and the per-category statistics are included
in Table 2.

• Google Local. The Google Local dataset was in-
troduced in a recent paper [6], which contains reviews
about local businesses worldwide. We extract busi-
nesses from the following states in the US: Colorado,
North Carolina, Washington, Illinois, Florida,
New York, Texas and California. Similarly we dis-
card users with fewer than 3 actions and build mod-
els independently for different states. This results in
around 1 million actions across 518 thousand items
and 184 thousand users, around 71% of which have as-
sociated textual information. Compared with Amazon,
Google Local is a relatively sparse dataset in terms
of actions associated with items, and contains rela-
tively shorter reviews.

Intuitively we consider ‘review’ actions as positive
feedback in our experiments, i.e., we regard all of the
reviewed user-item pairs as positive. Appearance of
this action indicates that a user bought a product or
visited a place. Different forms of implicit feedback
could be considered (such as clicks or purchases, if such

data were available), but using the presence of reviews
is desirable as it allows us to straightforwardly compare
against models designed for explicit feedback settings,
as described below.

Baselines and Evaluation Methodology. Besides
the proposed PRAST model, we consider the following
implicit-feedback baselines:

• itemPop. As item popularity (i.e., the number
of previous actions regarding an item) could be a
significant component in item ranking, we simply use
the count of positive responses for each item in the
training set as its preference score so that items are
ranked in terms of their popularity.

• BPR. This is a state-of-the-art implicit-feedback
pairwise ranking model. As we introduced previously,
a latent factor model is applied to generate item
preference scores.

• WARP. Weighted Approximate-Rank Pairwise [22]
is another state-of-the-art loss for Top-K recommen-
dation, which penalizes positive items at lower rank
heavily. Specifically, we apply a penalizing scheme
similar to [8], where a positive item i based on its
rank wi,u = log(rank i,u + 1).

• WRMF. Weighted Regularized Matrix Factorization
[9, 16] is another family of implicit-feedback models,
where standard matrix factorization is applied and an
additional weight is introduced to model unobserved
interactions, i.e., the loss function takes the form∑
u,i cu,i(yu,i − xu,i)2, where yu,i ∈ {0, 1} is the label

of the feedback and cu,i is usually set to be large for
positive feedback but small for non-interactions.

Comparing these implicit-feedback methods against
PRAST allows us to measure the influence of (asym-
metric) textual feedback in terms of ranking quality.

In addition, we consider two more alternatives
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Dataset Metric itemPop BPR WARP WRMF HFT-b CAPRF-b PRAST
improv.
vs. BPR

improv.
vs. HFT

improv.
vs. best

Amazon (overall)
AUC 0.7806 0.7990 0.7917 0.7881 0.7724 0.7846 0.8194 2.55% 6.09% 2.55%

NDCG 0.1079 0.1052 0.1071 0.1077 0.1010 0.0984 0.1082 2.88% 7.15% 0.29%

Amazon (cold)
AUC 0.5675 0.6000 0.5869 0.5804 0.5588 0.5691 0.6364 6.06% 13.88% 6.06%

NDCG 0.0713 0.0711 0.0712 0.0713 0.0705 0.0706 0.0715 0.49% 1.32% 0.28%

Google Local (overall)
AUC 0.5458 0.6731 0.5932 0.5730 0.5718 0.5751 0.7068 5.00% 23.60% 5.00%

NDCG 0.0809 0.0786 0.0766 0.0805 0.0825 0.0813 0.0869 10.51% 5.29% 5.29%

Google Local (cold)
AUC 0.5043 0.6459 0.5625 0.5339 0.5323 0.5346 0.6798 5.25% 27.70% 5.25%

NDCG 0.0752 0.0761 0.0735 0.0746 0.0762 0.0747 0.0804 5.59% 5.49% 5.49%

Table 3: Results on Amazon and Google Local (average metric across the complete dataset). The best
performance is underlined and the last column shows the percentage improvement of PRAST over the strongest
baseline.

that make use of the same textual information: 1)
a representative probabilistic model from a series of
methods where review text is incorporated into rating
prediction, and 2) a state-of-the-art model designed
for point-of-interest (POI) recommendation where ‘tip’
texts are included in order to estimate the number of
users’ check-ins. In particular we consider the following
two models:

• HFT-b. Hidden Factors as Topics (HFT) [14] is
an explicit-feedback approach which models both re-
view text and ratings. We still consider the ob-
served reviews only and replace the original Meas
Squared Error (MSE) loss by a binary cross-entropy
loss: yu,i log σ(xu,i)+(1−yu,i) log(1−σ(xu,i)), where
yu,i = 1 if the rating score is larger or equal to 3 and
yu,i = 0 otherwise.

• CAPRF-b. The Context-Aware POI Recommenda-
tion Framework CAPRF [5] applies a similar loss
function to WRMF but the number of check-ins is
regarded as a label yu,i and all non-interactions are
discarded. Here, tip texts are modeled as an addi-
tional regularization of item- and user- latent factors
through linear embeddings. In our case, similar to
HFT, we replace the number of check-ins by a binary
label based on rating score.

Note that the above two baselines use the same tex-
tual information as our method but discard all non-
interactions; thus they require minor adaptation to ap-
ply them in our implicit-feedback setting: The basic
assumption behind our adaptation of these methods is
that users are likely to interact with (purchase, visit, or
consume) items for which they are predicted to exhibit
a high preference score, based on their explicit signals
(e.g. high rating scores, multiple check-ins). By com-
paring these two methods against PRAST, we address
the difference between explicit-feedback and implicit-

feedback objectives and evaluate the influence of tak-
ing abundant unobserved interactions into consideration
given the same amount of textual information.

As our goal is to provide high-quality personalized
item rankings, we adopt the Area Under the ROC Curve
(AUC) as the overall evaluation measure (which is also
the criterion that BPR variants optimize), as well as
Normalized Discounted Cumulative Gain (NDCG) as a
top-biased ranking measure:

(5.8)

AUC =
1

|U|
∑
u∈U

1

|I+
u ||I−u |

∑
i∈I+u ,i′∈I−u

δ(i >u i
′),

NDCG =
1

|U|
∑
u∈U

∑
i∈I+u

1/ log2(rank i,u + 1)∑
0≤k<|∈I+u |

1/ log2(k + 1)

where δ(E) is an indicator function that takes the value
1 iff E is true.

Results. Following [14] we set K = 10 for the
dimensionality of latent factor vectors and the number
of topics. The confidence parameter for the language
model κ is set to be 0.1 in all the experiments and
the regularization parameter λ ∈ {0.01, 0.05, 0.1, 1} is
selected based on validation performance. We apply
leave-one-out evaluation, where for each dataset, we
sample 5000 users and their last action for testing,
and their second-to-last action for validation. All other
actions in the dataset are used for training. All results
are reported on the held-out test data.

We include the overall results in terms of the AUC
and NDCG on Amazon and Google Local datasets in
Table 3. To address the ‘cold-start’ problem, in ad-
dition to the complete dataset, we report the perfor-
mance on ‘cold’ items where the number of associated
actions is less than 5. For brevity, we include only the
average AUC/NDCG (across all categories and states)
for Amazon and Google Local, and provide barplots of
AUC (on the complete dataset) for each product cate-
gory and each state in Figure 3.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited



Ins
tan

t V
ide

o

Offic
e P

rod
uct

s

Digit
al 

Musi
c

Bab
y

Pe
t S

up
plie

s

Groc
ery

Hea
lth

Cell 
Ph

on
es

Amazon

0.6

0.8

1.0

AU
C 

(a
ll)

HFT-b BPR-MF PRAST

Colo
rad

o

Nort
h C

aro
lina

Wash
ing

ton
Illin

ois
Flo

rid
a

New
 Yo

rk
Te

xa
s

Calif
orn

ia

Google Local

0.5

0.6

0.7

0.8

AU
C 

(a
ll)

HFT-b BPR-MF PRAST

Figure 3: Results for each category in Amazon and for
each state in Google Local in terms of the AUC.

From Table 3 we notice that PRAST significantly
outperforms standard implicit-feedback baselines and
adjusted explicit-feedback baselines in terms of overall
ranking (AUC), especially when recommending ‘cold’
items. This indicates that appropriately incorporat-
ing textual information into a ranking loss can im-
prove personalized item recommendations. Based on
Figure 3 and Table 2, this improvement is substan-
tial on ‘sparse’ datasets in terms of the number of ac-
tions per item (e.g. Amazon (Digital Music)) but less
significant on relatively ‘dense’ datasets (e.g. Amazon

(Instant Video)). For Google Local, we observe lim-
ited impact of textual information on small datasets
(e.g. Colorado). One possible reason for this could be
the lack of data to fit high-dimensional language models.

For top-biased evaluation (NDCG), PRAST out-
performs baselines on both Amazon and Google Local

datasets, though the improvement is relatively limited
on Amazon. This is possibly because the number of items
is very large and item popularity often dominates user
preferences (especially on some Amazon categories) so
that improving a top-biased ranking metric is relatively
difficult for ‘cold’ items.

Qualitative Analysis. We examine the top words
for the topics discovered from PRAST based on
the normalized topic-specific word likelihood

φw,k∑
k′ φw,k′

.

Such topics can be used to explain latent prefer-
ence/motivation dimensions. Word clouds of three
topics discussed in Amazon (Office Products) and
Google Local (California) are shown in Figure 4.
In general, topics uncovered from Amazon (Office

Amazon (Office Products)

(a) Printer/Scanner (b) Price/Shipping (c) Appearance

Google Local (California)

(d) Rest.(General) (e) Rest.(Food) (f) Services

Figure 4: Word clouds from three selected topics
addressed in textual feedback from Amazon (Office

Products) and Google Local (California).

Products) are a mixture of genres (e.g. printer/scanner
in Figure 4a) and aspects (e.g. price/shipping in Fig-
ure 4b or product appearance Figure 4c), which reveal
what product a user wants to buy and what aspect a
user cares about when making a purchase. Similarly, we
see categories (e.g. education/medical/law services in
Figure 4f) from topics in Google Local (California)

and even different viewpoints for a particular category
(e.g. general aspects like price and service for restau-
rants in Figure 4d, and particular foods in Figure 4e).

In Figure 5, we provide an example review for an
item with relatively high scores for the item latent
factors in γi associated with the topic ‘print/scanner’
and the topic ‘price/shipping’. We split the review
text into sentences and provide the estimated relevance
score τs for each sentence in parentheses. We notice
that PRAST can automatically highlight the sentences
containing genre-specific keywords (e.g. ink, printer)
and price-related contents (e.g. cost, price, money,
economical) by assigning high relevance scores. This
suggests that in addition to improving ranking quality,
the PRAST model is capable of explaining latent
feedback dimensions and detecting the most relevant
textual content.

6 Conclusions and Future Work

We presented PRAST, a one-class recommendation
framework that allows us to make use of asymmetric
textual information in implicit feedback settings. In or-
der to overcome the challenge of asymmetry (i.e., side
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I have used it for several months now - Like it a lot 
- it has been reliable and easy to install. For me 

the most important factor is cost of use. Is it 
economical. It is economical and one very nice 
feature is it uses pigment ink so it is dry upon 

printing. It is hard to give any printer 5 stars as 
these are very good reasonably priced items but 
they are not expensive state of the art printers. 

One is clearly getting a lot for one's money.

Epson WorkForce 840 
Wireless All-in-One 
Color Inkjet Printer, 
Copier, Scanner, Fax

1) I have used it for several months now -

Like it a lot - it has been reliable and easy 

to install. (0.321) 

2) For me the most important factor is cost 

of use. (0.540) 

3) Is it economical. (0.490) 

4) It is economical and one very nice feature 

is it uses pigment ink so it is dry upon 

printing. (0.968) 

5) It is hard to give any printer 5 stars as 

these are very good reasonably priced 

items but they are not expensive state of 

the art printers. (0.985) 

6) One is clearly getting a lot for one's 

money. (0.761)

Figure 5: An example review selected from an item
with large scores on the ‘printer/scanner’ and the
‘price/shipping’ dimensions, where the estimated sen-
tence relevance scores τs are provided in parentheses.

information that is only available for positive instances),
we introduced a new optimization criterion incorporat-
ing a language model where preference factors and tex-
tual topics are matched in a relevance-aware way. Our
experiments on two large datasets revealed that asym-
metric textual information (like review text) leads to
substantial performance improvements, and that such
performance cannot be obtained by näıvely adapting
existing explicit feedback models.

The principle of PRAST can be extended to in-
corporate other types of ‘positive-only’ side information
(e.g. transaction timestamps and geo-tags, review help-
fulness, product prices in transaction logs, etc.). As
future work, these asymmetric signals can be modeled
with the proposed pairwise ranking criterion, and po-
tentially serve as informative context for better recom-
mendations.
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