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Abstract

A number of real-world networks are heterogeneous information networks
(HIN), which are composed of different types of nodes and links. Numerical
prediction in HIN is a challenging but significant area because net-
work based information for unlabeled objects is usually limited to make precise
estimations. In this paper, we consider a graph regularized meta-path based
transductive regression model (Grempt), which combines the principal philoso-
phies of typical graph-based transductive classification methods [1,2] and
transductive regression models designed for homogeneous networks [3]. The
computation of our method is time and space efficient and the precision of our
model can be verified by numerical experiments.

Introduction

Heterogeneous Information Network (HIN) is a kind of information network
where objects and links have different types. Numerical Prediction in HIN is
almed to predict numerical attributes based on the HIN structure.

Examples of Numerical Prediction in HIN:

e Predict box-office and expected rating score of an upcoming movie based on
an IMDb network

e Predict the total number of citations of an author based on the DBLP plus ci-
tation network

e Predict the number of retweets based on twitter network composed of tweets,
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We proposed a graph regularized meta-path based transductive regres-

sion model (Grempt).
Optimization Framework:

Included 1in most classification frameworks

Graph Regularized Meta-path Based Transductive Regression in

objective function ={graph regularization + loss on labeled objects

Heterogeneous Information Network

Hlloss on unlabeled objects (pseudo-labels involved) }
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Designed for numeric prediction
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Experiment
IMDDb Number of labeled Number of unla- Percentage of
objects beled objects labeled objects
Datasets: datasetl 3067 (2000-2012) 233 (2013-2013) 92.94%
dataset?2 2820 (2000-2011) 480 (2012-2013) 85.45%
. o o o dataset3 2578 (2000-2010) 722 (2011-2013) 78.12%
e IMDDb: predlct box-ottfice sales of movies datasetd | 2345 (2000—2009) 955 (2010-2013) 71.06%
DBLP Number of labeled Number of unla- Percentage of
- e DBLP: predict total number of citations of | oblects peled objests rvoied objocts
~ datasetl 3017 315 90.55%
| dataset?2 1666 1666 50.00%
I authors dataset3 334 2998 10.02%
- h f o dataset4 167 3165 5.01%
I ot .
Methods for Comparlson. Table 1: Summary of IMDb datasets (numbers in parenthe-
e LASSO [4] ses indicate released year) and DBLP datasets.

e Relational neighbor estimation with/without type information — RN_ntp/RN_tp [5]

e Transductive regression without penalty of local estimates with/without type information —
TRnloc_ntp/TRnloc [1, 2]

e Graph regularized meta-path based transductive regression with/without type information —
2 Grempt_ntp/Grempt (Our method)
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e Initialize numeric predictions f and weights of meta-path w

o Iteratively update fand wuntil converge
e Suppose f is fixed, we can obtain a closed form solution for the

weights of meta-path w

o Suppose w 1s fixed, we can obtain the solution of f by solving

an linear equation system or by a iterative method

ber of labeled objects decreases while contributions of [ | i t c 0 it =
relatively unimportant meta-paths will decrease.

(1: A-P-A, 2: A-V-A, 3: A-P<-P->P-A)

Figure 3: Weights for meta-paths of IMDb datasets and
DBLP datasets from Grempt Model.
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