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Abstract

A number of real-world networks are heterogeneous
information networks, which are composed of different
types of nodes and links. Numerical prediction in het-
erogeneous information networks is a challenging but
significant area because network based information for
unlabeled objects is usually limited to make precise es-
timations. In this paper, we consider a graph regu-
larized meta-path based transductive regression model
(Grempt), which combines the principal philosophies of
typical graph-based transductive classification methods
and transductive regression models designed for homo-
geneous networks. The computation of our method is
time and space efficient and the precision of our model
can be verified by numerical experiments.

1 Introduction

The real world is full of information networks. For
these networks, there are some quantities (or attributes)
associated with objects (or nodes) that are usually of
most interest. A number of information networks are
heterogeneous information networks (HIN), for exam-
ple, the IMDb network which contains movies, actors,
directors, writers, and studios as different types of ob-
jects. Movies in this network cannot be linked directly
while they could be linked by same actors, directors,
studios or writers. Different links have different types
just as different nodes have different types. Figure 1 is
an example of the IMDb network, which uses different
shapes and colors to indicate different object and link
types.

Numeric prediction in HIN is important in real-
world cases. For example, people may be interested in
predicting box office sales of an upcoming movie based
on the IMDb network, or predicting the total number
of citations of an author based on the DBLP plus cita-
tion network. Moreover, we notice that some real-world
inductive regression problems can be transformed into
transductive learning problems by constructing a net-
work structure. This network structure regularization
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Figure 1: An example of heterogeneous information net-
work: IMDb network composed of movies, directors, writers,
actors, studios and relationships among them.

offers us additional information to overcome the weak-
ness of standard induction regression. In this paper, we
will adhere to the transduction setting and develop a
numerical prediction method based on HIN.

We notice that numerical prediction in heteroge-
neous networks has not been thoroughly studied be-
fore. However, classification in heterogeneous network-
s [1–4] and regression in homogeneous networks [5, 6]
have been studied. Some homogeneous and heteroge-
neous graph-based classification methods do provide nu-
merical ‘soft’ predictions before assigning the class la-
bels [1, 2, 7]. However, there are two challenges if we
apply these methods directly on the numeric prediction
problem: 1) most classification methods arbitrarily set
the labels of unlabeled objects to be zeros in the fit-
ting constraint items, which will dramatically shrink the
numeric prediction to zero; 2) if unlabeled objects are
removed from the fitting constraint items, large vari-
ance of prediction could be a problem since numeric pre-
diction is too sensitive to the global network structure.
Cortes and Mohri [5] addressed this problem in homo-
geneous networks where pseudo-labels of unlabeled ob-
jects are estimated based on local information and an
additional item controlling the distance between predic-
tions and pseudo-labels is applied. Thus based on the
philosophy of the regularization framework, we exploit
the idea of local estimated labels for unlabeled object-



s and meta-path based HIN modeling skills to develop
a graph regularized meta-path based transductive re-
gression model (Grempt) in HIN. Compared with pre-
vious HIN models, we conclude the contributions of our
model as following:

• Our study is the first one to address the numerical pre-
diction problem in heterogeneous information networks;

• The response variable is narrowed to single type of ob-
jects, and meta-path and PathSim are used to perceive
the similarity between objects;

• Local estimated label (pseudo-label) is used to regular-
ize the numerical prediction precision;

• The contribution of each type of meta-path which cor-
responds to specific semantic meaning can be automat-
ically obtained from our model.

We will briefly introduce some related work in Sec-
tion 2. In Section 3, we will introduce the background
of heterogeneous information networks. In section 4, we
will introduce our Grempt model and the implementa-
tion algorithm. Details and results of the experiment
will be described in Section 5. In Section 6, we will
provide our conclusion and future directions.

2 Related Work

A straightforward idea to predict unknown at-
tribute of an object in the network is exploiting its
neighbors’ information. Relational Neighbor Classifi-
er [8] and Nearest Neighbor Prediction [9] are typical
methods with this philosophy.

Another well established prediction method in a ho-
mogeneous setting is Kernel Regression, which restricts
the search for an appropriate estimator of labeled and
unlabeled objects ĥ in Reproducing Kernel Hilbert S-
pace Hk [10]. Transductive Regression in homogeneous
networks can be regarded as a generalization of kernel
regression, where the idea of exploiting neighborhood
information is also included [5, 6].

For heterogeneous networks, some graph-based clas-
sification models [1–3] have been proposed. The general
framework of these methods is based on the similar as-
sumptions of kernel regression, which has a two-item ob-
jective function – the global structure smoothness item
and the goodness-of-fit item. However, these classifica-
tion methods either do not include unlabeled objects in
the second item or arbitrarily set the labels of unlabeled
objects to be zeros in the fitting constraint items, which
may not be suitable for our numeric prediction problem.

3 Background

3.1 Problem Definition In this study, a heteroge-
neous information network (HIN) can be defined as a
graph G = (V,E) , where Xi = {xi1, ..., xini

}, i =
1, 2, ..., t are t types of data objects, V = ∪tiXi and

E ={links between any two data objects in V }. If
weights of links are specified, G = (V,E) can be ex-
tended to be G = (V,E,R), where R ={weights of links
in E} and V,E are defined as before. We are interest-
ed in particular objects and their associated numerical
variable.

Suppose X ={X1, X2, ..., Xt}. Given some labels
of a numerical variable Y associated with a particular
type of objects X∗ ∈ X , the problem is to predict this
variable for unlabeled objects of this type. Different
from standard inductive regression which requires a
fully labeled training set to derive a specific function, we
consider the transductive setting where the unlabeled
objects are involved in the learning procedure and the
specific function is not of interest. This problem can be
formally defined as:

Definition 1. (Transductive Regression on HIN)
For a given HIN G = (V,E) , suppose variable Y is
associated with X∗ ∈ X . Suppose the number of labeled
objects is n and the number of unlabeled objects is m.
Given the full space of X∗ which is composed of n + m
objects x1, x2, ..., xn, xn+1, ..., xn+m, the labeled subspace
with Y can be defined as

(x1, y1), (x2, y2), ..., (xn, yn) ∈ X∗ × R,

and remaining objects xn+1, ..., xn+m are regarded as
unlabeled objects. If the purpose of the learning pro-
cedure is to infer yn+1, ..., yn+m of unlabeled objects, we
call it transductive regression.

3.2 Meta-path and Meta-path Based Similarity
In most cases, it may not be suitable to force the target
variable Y to represent the characteristics of all types
of objects. For example, among movie, actor, actress,
studio, genre, writer and other object types in the IMDb
network, box office sales is only suitable to be associated
with movie. In addition, because of the diversity of
links, HINs usually include a large number of objects
and edges. Thus the computational cost is high if all
types of objects are considered in the whole learning
procedure. Therefore, we need to pre-compute some
measures which could represent the type of links and
then only focus on our target type of objects in the
subsequent procedure.

Meta-path and meta-path based similarity have
been studied and applied in several HIN related prob-
lems [3, 4, 11, 12]. Our model is to shrink the topology
of G = (V,E) based on different types of meta-paths
and only keep the objects of interest. Thus we define
network schema and topology-shrinking sub-networks in
the following paragraphs. Sun et al. defined the network
schema as a meta template for a heterogeneous network,
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Figure 2: Four sub-graphs extracted from the IMDb exam-
ple showed in Figure 1 based on four different meta-paths:
a) movie-actor-movie; b) movie-director-movie; c) movie-
writer-movie; d) movie-studio-movie.

and they provided the definition of Meta-path based on
this network schema [11]. If A denotes object types and
R denotes relation types, then a meta-path P can be
denoted as A1 → R1 → A2 → R2 → ... → Rl → Al+1,
where Ai ∈ A and Rj ∈ R. This meta-path P indicates
a composite relation R = R1 ◦R2 ◦ ...◦Rl between types
A1 and Al+1, where ◦ denotes the composition operator
on relations [11].

For this transductive regression problem, we only
consider meta-paths where A1 = Al+1. This is because
we are only interested in one certain type T of objects,
such as movies in IMDb network and papers in DBLP
network. Suppose T is the type of X∗. Given one or
more meta-paths P1, ..., PK in which A1 = Al+1 = T ,
we can define the topology shrinking sub-network com-
posed of a particular type of objects as the following.

Definition 2. (Topology shrinking Sub-network)
Given a heterogeneous information network G = (V,E)
and a type of meta-paths P , the topology shrinking sub-
network of the certain object type T can be denoted as
GT = (VT , ET , RT ), VT = X∗, ET = {euv|pxu xv

∈
P, xu, xv ∈ VT } and RT = {Ruv|Ruv is the weight
of euv ∈ ET }, where pxu xv

denotes a path instance
between xu and xv.

Given a set of meta-paths P1, P2, · · · , PK , our analysis
is based on the corresponding set of associated topology-

shrinking sub-networks G
(k)
T = (VT , E

(k)
T , R

(k)
T ), k =

1, 2, ...,K. For the particular IMDb example in Figure 1,
Figure 2 shows four sub-graphs extracted based on four
different meta-paths: a) movie-actor-movie; b) movie-
director-movie; c) movie-writer-movie; d) movie-studio-
movie.

When we obtain the structure of G
(k)
T , what we

need to do is to decide the weight of each link. Thus
we introduce a meta-path based similarity measure
PathSim [11], which can favor objects with strong
connectivity and similar visibility, i.e. “peers”, under
the given meta-path. Given a symmetric meta-path Pk,
PathSim between two objects xu and xv of the same
type can be defined as

sk(xu, xv) =
2× |{pxu xv : pxu xv ∈ Pk}|

|{pxu xu : pxu xu ∈ Pk}|+ |{pxv xv : pxv xv ∈ Pk}|

where pxu xv , pxu xu and pxv xv are path instances.

Then for a homogeneous sub-graph G
(k)
T , the weight

R
(k)
uv of the link e

(k)
uv can be defined as the PathSim

measure sk(xu, xv) between xu and xv based on the
meta-path Pk. If there is no link between an object xu
and itself, the weight R

(k)
uu will be zero. In this study,

we use a relation matrix R(k) = {R(k)
uv }(n+m)×(n+m) to

denote R
(k)
T . To simplify computation, we only consider

the undirected G
(k)
T in subsequent sections and thus

R(k) will be symmetric. However, the same procedure
can be used to do numerical prediction on directed
graph as well.

4 Model

Our graph regularized meta-path based transduc-
tive regression model (Grempt) is based on the consis-
tency among network data. In the context of meta-
path and similarity measure PathSim, our model fol-
lows three principles: 1) predictions of the target vari-
able of two linked objects are likely to be similar, and
the tighter the link is, the more similar the two predic-
tions are; 2) predictions of the target variable of labeled
objects should be similar to their labels; 3) prediction-
s of the target variable of unlabeled objects should be
similar to their local estimated labels (pseudo-labels).

Particularly, pseudo-label is significant in our mod-
el since local regularization could be introduced to im-
prove the prediction, which is also the key difference
between Grempt and previous HIN models. If only glob-
al information is included, the prediction would shrink
to the global mean, which might influence the perfor-
mance on some sparse HINs. However, only using local
estimates is not sufficiently robust in network predic-
tion problems. Combining global information and local
information can be regarded as a kind of model aver-
aging method which takes advantage of both two types
of model, so that it can improve the prediction power
based on both global consistency and local consistency.

In this section, we will first introduce the general
framework of our model based on these intuitions. Then
we will describe the details of estimating pseudo-labels



and the algorithm for optimizing the objective function
which controls both global and local consistency.

4.1 Global and Local Graph Regularized
Framework. This Grempt model is a constraint op-
timization framework based on the three consisten-
cy principles we discussed above. Given K meta-
paths P1, P2, ..., PK , we can obtain a set of topology-
shrinking homogeneous sub-networks of type T , denot-

ed by G
(k)
T = (VT , E

(k)
T , R

(k)
T ), k = 1, 2, ...,K. We first

introduce some notations as following:

yL = (y1, ..., yn)T denotes a vector of true labels of
labeled objects x1, ..., xn;

yU = (yn+1, ..., yn+m)T denotes a vector of true
labels of unlabeled objects xn+1, ..., xn+m;

y = (yT
L ,y

T
U )T .

ỹU = (ỹn+1, ..., ỹn+m)T denotes a vector of pseudo-
labels of unlabeled objects xn+1, ..., xn+m;

w = (w1, ..., wK) denotes a vector of weights of sub-

networks G
(k)
T = (VT , E

(k)
T , R

(k)
T ), k = 1, 2, ...,K.

Suppose the estimation of yu from our model is denoted
by fu, u = 1, ..., n, n+1, ..., n+m, then we have following
notations:

fL = (f1, ..., fn)T denotes estimations of yL;

fU = (fn+1, ..., fn+m)T denotes predictions of yU ;

f = (fTL , f
T
U )T .

Then the objective function in our optimization frame-
work can be defined as

(4.1) J(w; f) = Ω(w; f) + α1C1(fL; yL) + α2C2(fU ; ỹU ).

In this function, α1 and α2 are two given parameters,
and Ω(w; f), C1(fL; yL) and C2(fU ; ỹU ) are three d-
ifferent loss functions to guarantee the previous three
principles respectively.

• The first item Ω(w; f) in the objective function
(4.1) is a composite graph regularization item
controlling the global consistency among all the

topology-shrinking sub-graphs G
(k)
T , k = 1, 2, ...,K.

It can be defined as
(4.2)

Ω(w; f) =

K∑
k=1

wk

m+n∑
u,v=1,u 6=v

R(k)
uv

 fu√
D

(k)
u

− fv√
D

(k)
v

2

,

where D
(k)
u is the summation of u-th row in R(k).

This item controls not only the global consistency

of each graph G
(k)
T but also the consistency of

different sub-graphs, where w and f are two sets

of unknown variables. With the constraint (4.5),
the weight vector w reflects the contribution of

each sub-graph G
(k)
T ’s structure to the consistency

of target variable Y .

• C1(fL; yL) in (4.1) is a loss function controlling
the difference between predicted label values fL
and given labels yL of labeled objects. In Grempt
model, we use a quadratic loss function which can
be simply defined as
(4.3)

C1(fL; yL) =

n∑
u=1

(fu − yu)2 = (fL − yL)T (fL − yL).

• Similarly, C2(fU ; ỹU ) in (4.1) is a loss function con-
trolling the difference between predicted values fU
and pseudo-labels ỹU of unlabeled objects. This
pseudo-label estimation usually involves location
information and thus can be treated as a local con-
sistency constraint. Since errors can be introduced
by estimating the pseudo-label as well, not only
the raw difference but also the reliability of the
pseudo-label which is represented by variance need
to be taken into account. Therefore a Mahalanobis-
distance-type loss function is used in our Grempt
model. Specifically, it can be defined as

(4.4)
C2(fU ; ỹU ) =

m∑
v=1

(fn+v − ỹn+v)2

σ2
ỹn+v

= (fU − ỹU )TΣ−1(fU − ỹU ),

where σ2
ỹn+v

is the variance of xn+v’s pseudo-label

estimation, Σ is a m×m diagonal matrix, the (v, v)-
th element of which is σ2

ỹn+v
. Specific pseudo-label

estimation procedure will be introduced later on.

• The parameters α1 and α2 control the trade-off a-
mong all three items. These two parameters can be
assigned based on prior knowledge or determined
by cross-validation.

Our target is seeking f and w to minimize this
objective function subject to a constraint δ(w) = 0.
Specifically in our model, we use the constraint function

δ(w) =
K∑

k=1

exp(−wk) − 1. This constraint ensures the

problem can be converted into a convex optimization
problem and closed-form global optimization solution of
wk can be obtained. Then this problem can be written
as

min
f ,w

J(w; f) =Ω(w; f) + α1C1(fL; yL) + α2C2(fU ; ỹU )

=

K∑
k=1

wk

 m+n∑
u,v=1,u 6=v

R(k)
uv

 fu√
D

(k)
u

− fv√
D

(k)
v

2
+ α1

n∑
u=1

(fu − yu)2 + α2

m∑
v=1

(fn+v − ỹn+v)2

σ2
ỹn+v



subject to

(4.5)
K∑
k=1

exp(−wk) = 1.

We thus conclude that the optimization algorithm
can be implemented in two stages:

1. Estimating pseudo-labels ỹU of unlabeled objects
and their associated variance using local informa-
tion;

2. Given pseudo-labels, optimizing the objective func-
tion (4.1) subject to constraint (4.5).

We will introduce details of each stage in next two
subsections.

4.2 Pseudo-label Estimation. There are several
approaches to determine pseudo-labels. In this study,
pseudo-labels are estimated based on the position of un-
labeled objects. Specifically, we only consider neighbor-
hood information based on the equal combination of all

homogeneous sub-networks G
(k)
T

1. The combined rela-

tion matrix can be defined as R =
K∑
k=1

R(k), where the

(u, v)-th element is Ruv =
K∑
k=1

R
(k)
uv . Then the labeled q-

nearest neighborhood based on the combination of sub-

networks G
(k)
T of an unlabeled object xn+v can be de-

fined as

Nq(xn+v) = {xu|Rn+v,u > 0, 1 ≤ u ≤ n,
Rn+v,u ∈ {largest q elements of Rn+v,1, ..., Rn+v,n}}.

We use a simple relational model to describe this local
information and obtain the pseudo-label of xn+v and
the variance of this distribution. Given the labeled q-
nearest neighborhood of xn+v, suppose yn+v follows a
discrete distribution where for xu ∈ Nq(xn+v),

pn+v,u = P (yn+v = yu|Nq(xn+v)) ∝ Rn+v,u.

Then ỹn+v can be assigned to the mean of this distri-
bution, i.e.
(4.6)

ỹn+v =
∑

u∈Nq(xn+v)

pn+v,uyu =

∑
u∈Nq(xn+v)

Rn+v,uyu∑
u∈Nq(xn+v)

Rn+v,u
.

1Weight of each shrinking homogeneous sub-network can be

given by prior knowledge or determined by some validation
methods. However, it is usually tricky to tune these parameters.
In this study, we use equal combination as a straightforward

example and the experiments indicate that it is enough to show
the priority of using pseudo-label.

The variance of this distribution can be calculated as

(4.7)
σ2
ỹn+v

=
∑

u∈Nq(xn+v)

pn+v,u(yu − ỹn+v)2.

From (4.7) we notice that if xn+v’s neighbors’ labels
tend to be similar, σ2

ỹn+v
tends to be small. The pseudo-

label of xn+v thus tend to be reliable and vice versa.
Based on above description, pseudo-labels of unla-

beled objects ỹU and their associating variances Σ =
diag{σ2

ỹn+v
}v=1,...,m can be directly computed.

4.3 Optimization Procedure. In this section, we
will discuss the algorithm used in the optimization
procedure.

In the objective function (4.1), the first item can be
explained by matrix transformation. For each relation
matrix R(k),

• D(k) is a diagonal matrix where the (u, u)-th ele-
ment is the summation of u-th row in R(k);

• S(k) = [D(k)]−1/2R(k)[D(k)]−1/2;

• L(k) = I − S(k) = I − [D(k)]−1/2R(k)[D(k)]−1/2 is
the normalized Laplacian matrix for the topology-

shrinking sub-graphs G
(k)
T .

Thus we have
(4.8)

Ω(w; f) =

K∑
k=1

wk(2fT f − 2fTS(k)f) = 2

K∑
k=1

wkf
TL(k)f ,

which indicates that Ω(w; f) can be regarded as a linear
combination of normalized Laplacian regularizers based

on different sub-graphs G
(k)
T .

From (4.8) (4.3) and (4.4), the objective function
(4.1) can be re-written as

J(w; f) =2

K∑
k=1

wkf
TL(k)f + α1(fL − yL)T (fL − yL)

+ α2(fU − ỹU )TΣ−1(fU − ỹU ).

Then we can use the block coordinate descent approach
[13], which will keep reducing the value of the objective
function, to iteratively update f and w. The first step
is to fix f and update w to minimize J(w; f); the second
step is to fix w and update f to minimize J(w; f). We
could iteratively do these two steps until convergence.
Here we provide two theorems to help us deduce the
algorithm, which can be proved using similar techniques
in previous graph regularized regression studies [1, 5].



Theorem 4.1. Suppose f is fixed, the objective problem
J(w; f) with constraint function δ(w) = 0 is a convex
optimization problem. The global optimal solution is
given by

wk = − log

 fTL(k)f
K∑
k=1

fTL(k)f

 .(4.9)

Theorem 4.2. Suppose w is fixed, the objective prob-
lem J(w; f) is a convex optimization problem. The glob-
al optimal solution is given by solving the following lin-
ear system:
(4.10)

(2

K∑
k=1

wk + α1)fL = 2

K∑
k=1

wk(S
(k)
11 fL + S

(k)
12 fU ) + α1yL;

(2

K∑
k=1

wk + α2Σ−1)fU = 2
K∑
k=1

wk(S
(k)
21 fL + S

(k)
22 fU ) + α2Σ−1ỹU .

where

S(k) =

[
S
(k)
11 S

(k)
12

S
(k)
21 S

(k)
22

]
,

is partitioned according labeled and unlabeled objects.

We notice that it is nontrivial to obtain a closed form
solution by jointly solving equations (4.9) and (4.10).
Although given w, (4.10) can be solved directly, for
time and space efficiency, we can provide an iterative
algorithm as well, which can be described as

1. Determine pseudo-label ỹn+v and corresponding vari-
ance σ2

ỹn+v
based on (4.6) and (4.7);

2. Initialize t = 0, w1(0) = w2(0) = ... = wK(0) = log(K),
and f(0) = (yTL , ỹ

T
U )T ;

3. Suppose we have w(t) and f(t), then use f(t) to
calculate w(t + 1) based on (4.9), and use w(t + 1)
to update f(t+ 1) based on the following rules:

fu(t+ 1) =

2
K∑
k=1

wk(S
(k)
11 fL(t) + S

(k)
12 fU (t))u + α1yu

2
K∑
k=1

wk + α1

,

u = 1, 2, ..., n;

fn+v(t+ 1) =

2
K∑
k=1

wk(S
(k)
21 fL(t) + S

(k)
22 fU (t))v +

α2ỹn+v

σ2
ỹn+v

2
K∑
k=1

wk + α2

σ2
ỹn+v

,

v = 1, 2, ...m.

where (·)u indicates the u-th element of a vector.

4. Repeat previous procedure until w(t) and f(t) converge.

4.4 Time Complexity Analysis. We only consider
the computational complexity of above iterative method
for the objective function optimization in this section.
Suppose m + n is the number of objects, K is the

number of meta-paths we selected, and |E(1)
T |, .., |E

(K)
T |

are the numbers of edges of topology-shrinking sub-
networks given meta-path P1, ..., PK . Suppose the re-
lation matrix R(k) and its corresponding normalized
matrix S(k) are pre-computed before the learning pro-
cedure. Then for initialization, we need O(m+n+K)
time. For each iteration, we need to scan each edge in

G
(1)
T , ..., G

(K)
T to do matrix multiplication, scan each ob-

ject and each type of meta-path to do other arithmetic-
s. Therefore the objective function optimization costs

O((n+m+K)+N(n+m+K+
K∑

k=1

|E(k)
T |)) time, where N

is the number of iteration. Since the number of object-
s of topology shrinking sub-networks are much smaller
than the number of objects in the original HIN and the
iterative procedure converges rapidly (N < 20 in our
experiments), our algorithm is time and space scalable.

5 Experiment

5.1 Dataset. We applied our model to two sets of
data – data from the Internet Movie Database (IMDb)
and data from the DBLP Computer Science Bibliogra-
phy.

• The IMDb data used in this study are extracted from
the IMDb interface 2 and Box Office Mojo3 affiliated
with IMDb. We keep the data related to movies whose
names can be exactly matched based on these two
sources. For the combined dataset, we only keep the
movies released in 2000-2013 with at least 1000 user
votes on the IMDb website and related actors, actresses,
directors, writers, genres and studios. In this dataset,
the target variable is log(box office sales), which is
associated with movie. The meta-path we used in
the IMDb network are movie-actor-movie (M-A1-M),
movie-actress-movie (M-A2-M), movie-director-movie
(M-D-M), movie-genre-movie (M-G-M), and movie-
writer-movie (M-W-M). Notice that in the experiment,
we only keep the actors, actresses, directors, genres and
writers, each of which appears in at least two movies,
and the movies which are related to these objects. The
final IMDb network used in the experiment contains
3300 movies, 18845 actors, 9065 actresses, 746 directors,
20 genres, 197 studios and 1623 writers. To address the
temporal nature of movies, we labeled four different sets
of movies based their released years. The summary of
these four datasets is showed in Table 1.

• The DBLP data used in this study are collected by Ar-
netMiner4 [14], which contains all papers from DBLP
and a fraction of citation relationships between paper-
s. The latest version was updated in Sep. 2013. We
keep papers published in 2009-2013, data mining and

2http://www.imdb.com/
3http://www.boxofficemojo.com/
4http://arnetminer.org/DBLP Citation



IMDb Number of labeled
objects

Number of unla-
beled objects

Percentage of
labeled objects

dataset1 3067 (2000–2012) 233 (2013–2013) 92.94%
dataset2 2820 (2000–2011) 480 (2012–2013) 85.45%
dataset3 2578 (2000–2010) 722 (2011–2013) 78.12%
dataset4 2345 (2000–2009) 955 (2010–2013) 71.06%

DBLP Number of labeled
objects

Number of unla-
beled objects

Percentage of
labeled objects

dataset1 3017 315 90.55%
dataset2 1666 1666 50.00%
dataset3 334 2998 10.02%
dataset4 167 3165 5.01%

Table 1: Summary of IMDb datasets (numbers in parenthe-
ses indicate released year) and DBLP datasets.

machine learning related venues5, related authors, v-
enues and citation relationship. In this dataset, the
target variable is log(#citation + 1) where for a par-
ticular author, #citation is the total citation number
of papers he/she published in 2009-2013. We only
consider authors who have published papers in 2009
and have published at least two papers in 2009-2013.
The meta-path used in the DBLP network are author-
paper-author (A-P-A), author-venue-author (A-V-A),
and author-paper-(cited by)-paper-(cite)-paper-author
(A-P←P→P-A). The final DBLP network used in the
experiment contains 3332 authors, 1289 papers, 1046
terms and 27 venues. For DBLP data, we randomly
labeled four different sets of authors according to dif-
ferent label proportions. To address the cases where
labels are limited, we labeled a small portion of data
(10% and 5%) in the last two datasets. The summary
of these four datsets is showed in Table 1.

5.2 Preprocessing. For both IMDb data and DBLP
data, we are more interested in the log transformation of
original response variable box office sales or the number
of citation because of their wide ranges. Besides,
to easily compare the parameters α1 and α2 in two
datasets, we normalize the original label values yu, u =
1, ..., n of log(box office sales) and log(#citation+ 1)
to occupy the unit interval [0, 1] by

(yu − min
u=1,..,n

yu)/( max
u=1,..,n

yu − min
u=1,...,n

yu),

and use these values as inputs yu, u = 1, 2, ..., n. When
the outputs fn+v, v = 1, ...,m are obtained, we use the
inverse transformation

fn+v × ( max
u=1,..,n

yu − min
u=1,..,n

yu) + min
u=1,..,n

yu

to transform them back. These transformed predicted
values are used in the model evaluation procedure.

5
AAAI, CIKM, CVPR, ECIR, ECML, EDBT, ICDE, ICDM, ICML, IJCAI,

KDD, PAKDD, PKDD, PODS, SDM, SIGIR, SIGMOD, VLDB, WWW, WSDM,
SIGMOD record, ACM trans. database syst., data knowl. eng., data min. knowl.
discov., IEEE data eng. bull., IEEE trans. knowl. data eng., j. database
manag., journal of machine learning research, machine learning, knowl. inf. syst.,
SIGKDD explorations, VLDB j.

5.3 Models For Comparison. We compare our
graph regularized meta-path based transductive regres-
sion model (Grempt) with six different models – Lasso,
RN ntp, RN, TRnloc ntp, TRnloc and Grempt ntp.

• Lasso [15]. In order to show the necessity of trans-
duction setting in network data, we compare our model
to a state-of-the-art inductive regression model – Las-
so, which is also regarded as the baseline method in
this study. When applying Lasso regression on IMDb
data, objects except movies are treated as categorical
variables associated with movies. Similarly, for DBLP
data, objects except authors and citation relationships
are treated as categorical variables.

• k-nearest Relational Neighbor Estimation. This
relational neighbor prediction model which only in-
volves local estimated labels shares the similar idea to
Relational Neighbor Classifier (RN) [8]. However, we
only use the k-nearest neighbors to to estimate labels
of unlabeled objects, which is the same as the previ-
ous pseudo-label estimation method. We consider two
different k-nearest RN models – the RN model regard-
less of different types of meta-path (RN ntp) and the
one in which types of meta-path are considered (RN ).
For RN ntp, we treated all types of meta-path as a same
type so that the input HIN could be a homogeneous one.
Then we calculated relation matrix based on this uni-
fied meta-path, and the same as other non-type models
used for comparison.

• Transductive Regression Without Local Estima-
tion. This transductive regression model without using
local estimated labels is equivalent to our Grempt mod-
el without the third item i.e. α2 ≡ 0. This two-term
objective function is similar to two state-of-the-art HIN
classification methods GNetMine [1] and RankClass [2].
Similar with previous method, we also consider two s-
cenarios – all meta-paths are regarded as in the same
type (TRnloc ntp) and different types of meta-paths are
involved (TRnloc).

• Homogeneous Grempt Model. To validate the d-
ifferent contributions of different meta-paths, we com-
pare our standard Grempt model with a Grempt ntp
model where meta-paths are regarded as in the same
type.

5.4 Evaluation Measure. All of the models are e-
valuated by mean absolute prediction error (MAE),
which has the same scale of data and is relative in-
sensitive to outliers. For the unlabeled objects xn+v,
v = 1, ...,m, we have

MAE =
1

m

m∑
v=1

|fn+v − yn+v|.

5.5 Performance. In RN ntp, RN and pseudo-label
estimation in Grempt ntp and Grempt, we use 5-nearest
neighbors on both IMDb data and DBLP data and e-



- Dataset1 %label=92.94% Dataset2 %label=85.45%

Method MAE Improvement MAE Improvment

Lasso 2.824 Baseline 2.878 Baseline
RN ntp 2.104 25.49% 2.163 24.85%

RN 2.031 28.08% 2.064 28.31%
TRnloc ntp 2.213 21.63% 2.196 23.70%

TRnloc 2.858 -1.20% 3.059 -6.26%
Grempt ntp 2.095 25.82% 2.144 25.52%

Grempt 1.912 32.28% 1.941 32.57%

- Dataset3 %label=78.12% Dataset4 %label=71.06%

Method MAE Improvement MAE Improvment

Lasso 2.929 Baseline 2.761 Baseline
RN ntp 2.131 27.24% 2.096 24.10%

RN 2.079 29.02% 2.025 26.65%
TRnloc ntp 2.230 23.85% 2.232 19.19%

TRnloc 3.272 -11.72% 3.362 -21.75%
Grempt ntp 2.115 27.77% 2.084 24.55%

Grempt 1.969 32.77% 1.916 30.61%

Table 2: Results of Prediction Error on IMDb Datasets.

- Dataset1 %label=90.55% Dataset2 %label=50.00%

Method MAE Improvement MAE Improvment

Lasso 0.7410 Baseline 0.8152 Baseline
RN ntp 0.6733 9.14% 0.7886 3.27%

RN 0.6689 9.73% 0.8196 -0.54%
TRnloc ntp 0.8551 -15.40% 0.94 -15.31%

TRnloc 0.6359 14.18% 0.7754 4.89%
Grempt ntp 0.8213 -10.85% 0.9139 -12.11%

Grempt 0.6352 14.28% 0.7745 5.00%

- Dataset3 %label=10.02% Dataset4 %label=5.01%

Method MAE Improvement MAE Improvment

Lasso 1.1935 Baseline 0.9673 Baseline
RN ntp 0.9217 22.78% 0.958 0.96%

RN 0.9631 19.31% 0.9687 -0.15%
TRnloc ntp 1.0143 15.02% 1.0788 -11.53%

TRnloc 0.9533 20.13% 1.0735 -10.98%
Grempt ntp 0.9212 22.82% 0.9531 1.47%

Grempt 0.9023 24.40% 0.9342 3.42%

Table 3: Results of Prediction Error on DBLP Datasets.

IMDb Dataset 1 Dataset 2 Dataset 3 Dataset 4
Running time(s) 8.876 10.956 9.084 10.799

DBLP Dataset 1 Dataset 2 Dataset 3 Dataset 4
Running time(s) 5.5640 6.345 6.095 6.392

Table 4: Running Time of Single Experiment of Grempt
Model on IMDb and DBLP Datasets

qual weighted combination of relation matrix of differ-
ent homogeneous sub-networks. We notice that label
accuracy is very important in our model since MAE de-
creases as α1 increases on all the datasets. However, the
relative importance of the local estimates α2 varies for
IMDb data and DBLP data. We notice that for the D-
BLP network, the importance of pseudo-label varies for
different percentages of labeled objects. α2 could be de-
termined based on cross-validation in different datasets.
For sparse network like IMDb, local estimates are more
important so that we suggest relatively large values as
candidates for α2. We also notice that dense network
like DBLP with a small percentage of labeled objects
has a similar property. For dense network like DBLP
with sufficient labeled objects, however, global consis-
tencies are more significant and thus relatively small
values for α2 are suggested.

Experimental results on IMDb datasets and DBLP
datasets are showed in Table 2 and Table 3 respectively.
Here, in TRnloc ntp, TRnloc, Grempt ntp and our
model Grempt, we set α1 = 2000. For Grempt ntp
and Grempt, we set α2 = 3 for all four IMDb datasets,
α2 = 0.005 for DBLP dataset1 and dataset2, and α2 = 1
for DBLP dataset3 and dataset4. These parameters for
Grempt model are not optimal setting, but are enough

IMDb datset 4 log(box office sales) -
Name Groundtruth Prediction

The Hobbit: An Unexpected Journey 19.53 18.68
The Hobbit: The Desolation of Smaug 19.37 18.80

The Hunger Games 19.83 17.44
The Hunger Games: Catching Fire 19.87 17.67

Kung Fu Panda 2 18.92 18.55
Nebraska 16.69 16.27

Before Midnight 15.91 14.71
Shahid 9.41 13.05
Udaan 8.92 13.15

Table 5: Prediction Examples of log(box office sales) from
Grempt model applied on IMDb dataset4.

to show the superiority of our model. From these two
tables, we can conclude that our Grempt model has the
best performance on both IMDb datasets and DBLP
datasets. Running time of Grempt model are showed in
Table 4, which indicates that each single experiment of
our method can be executed within seconds.

Some representative examples from IMDb dataset4
are selected to show the predictions obtained from our
model, which are displayed in Table 5. We thus conclude
that the Grempt model has the potential to predict the
numeric variable in heterogeneous information networks
Objects whose predicted values are much different from
true values may need to be analyzed case-by-case.

We notice that traditional regression methods such
as Lasso cannot predict the value of target variable pre-
cisely because it lacks the ability to capture the struc-
ture information of the network. Methods only using
local information (RN ntp, RN ) and methods only us-
ing global consistency (TRnloc ntp, TRnloc) have dif-
ferent performance on IMDb and DBLP datasets be-
cause of their different structure characteristics. Since
the IMDb network is much sparser than the DBLP net-
work, local information in the IMDb network could be
more reliable than global consistency which is reversed
in the DBLP network. However, our model can balance
these two kinds of consistency so that it can yield a
better overall result. In addition, poor performances of
RN ntp, TRnloc ntp and Grempt ntp indicate that het-
erogeneous structures cannot be ignored in graph-based
numerical prediction problems.

The vector of weights of different meta-paths w ob-
tained from the iterative algorithm on IMDb data and
DBLP data are plotted in Figure 3. It can be conclud-
ed that for the IMDb network, movie-actor-movie and
movie-actress-movie have more significant influence on
the box office sales of a movie than other meta-paths,
and movie-genre-movie is the least important among all
selected meta-paths. For the DBLP network, author-
paper-author and author-venue-author are more signif-
icant than author-paper-(cited by)-paper-(cite)-paper-
author with respect to the total citation number of an
author. Moreover, from Figure 3 we notice that con-
tributions of those important meta-paths will increase
as the number of labeled objects decreases, while con-
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Figure 3: Weights for meta-paths of IMDb datasets and
DBLP datasets from Grempt Model.

tributions of relatively unimportant meta-paths will de-
crease.

6 Conclusion and Future Work

In this paper, we proposed a meta-path based trans-
ductive regression model in HIN which incorporates the
ideas of global graph-based consistency and local esti-
mation. We obtained the best performance among all
candidate frameworks for box office sales prediction in
IMDb network and total citation number prediction in
DBLP network.

There are some potential improvements of this ini-
tial research in numerical prediction in HIN. In many
real-world cases, people may need more accurate re-
sults for important objects, such as blockbuster movies
and highly-cited authors. Thus ranking information and
preference could be introduced in the transductive re-
gression models. We also notice that some variables may
correlate with each other (e.g. box office and rating s-
core). Therefore, another problem could be generalizing
this model from univariate case (e.g. predicting box of-
fice only) to multivariate case (e.g. predicting box office
and rating score jointly) based on correlation between
variables.
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