Item Recommendation on Monotonic Behavior Chains

Mengting Wan, Julian McAuley University of California, San Diego Oct. 2018

A spectrum of user-item interactions

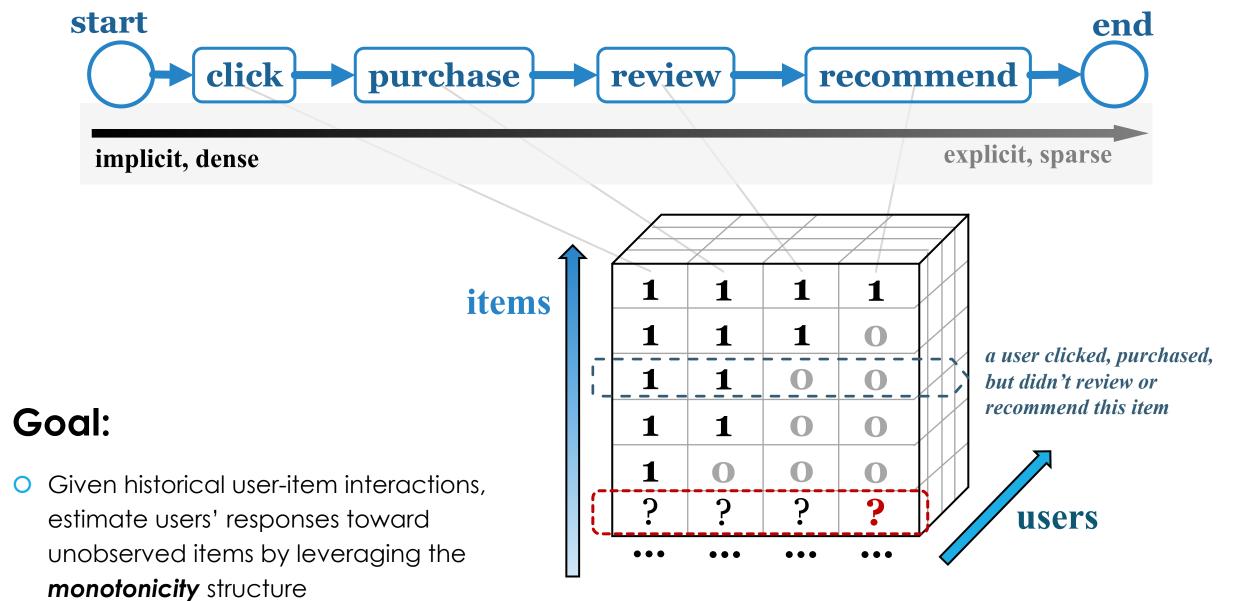
- Explicit Feedback
 - numeric rating scores, etc.
 - o scarce

- Implicit Feedback
 - o click, purchase, etc.
 - abundant

- Item Recommendation:
 - How to properly represent a spectrum of users' responses?
 - How to efficiently leverage the connections among them?

A spectrum of user-item interactions

- O Monotonic Behavior Chains
 - any signal necessarily implies the presence of a weaker (or more implicit) signal
 - o a 'review' action implies a 'purchase' action, which implies a 'click' action, etc.



$$y_{ui,1} \geq y_{ui,2} \geq y_{ui,3} \geq y_{ui,4}$$

Preliminary Learning Strategies

- Learning User Preferences
 - Independent of Stages

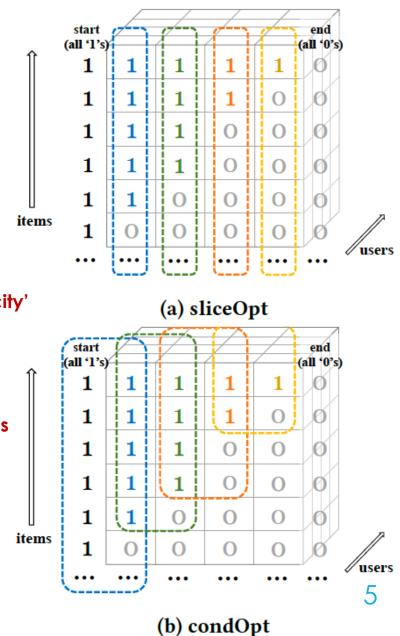
Ignores stage dependency

- train different models for different types of feedback signals
- Jointly on Different Stages (sliceOpt)

Doesn't model the 'monotonicity' directly

- O Share user and item embeddings, train on all stages together
- Conditioned on Previous Stages (condOpt)
 Scarce data at later stages
 - Train on stage 'escalation', use the jointly probability as the preference score

$$s_{ui,l} := P(y_{ui,1} = \ldots = y_{ui,l} = 1) = \prod_{l'=1}^{l} p_{ui,l'|l'-1}$$



The Proposed Algorithm: chainRec

- Monotonic Scoring Function
 - Preserve the monotonicity of the interaction matrix
- Edgewise Optimization Criterion
 - O Prune the redundant information and improve optimization efficiency

Monotonic Scoring Function

Monotonicity of user feedback

Estimated preference scores

Make sure the difference is non-negative

Э

$$s_{ui,l} - s_{ui,l-1} = \delta_{ui,l}^+ \ge 0$$

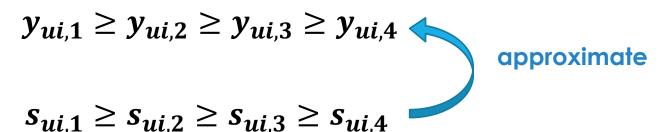
Tensor decomposition + Rectifier

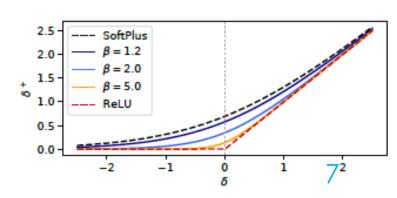
$$\delta_{ui,l} = <\gamma_l$$
, $\gamma_i \circ \gamma_u >$

$$\delta_{ui,l}^+ = \frac{1}{\beta} \log(1 + \exp(\beta \delta_{ui,l}))$$

Monotonic Scoring Function

$$s_{ui,l} = b_0 + b_i + b_u + \sum_{l'=l}^{L} \delta_{ui,l'}^+$$



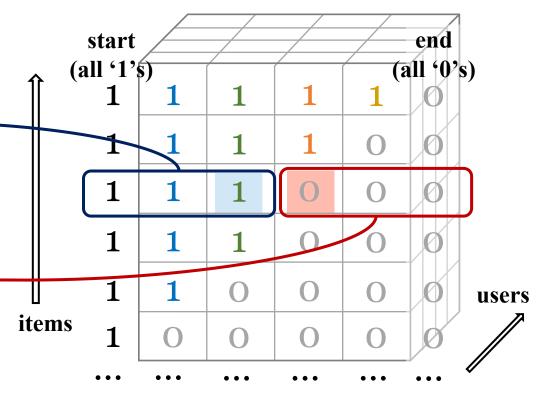


Edgewise Optimization Criterion (edgeOpt)

Probabilistic implications from the monotonicity:

$$P(y_{ui,1} = 1, \dots, y_{ui,l} = 1) = P(y_{ui,l} = 1), \quad \forall l;$$

 $P(y_{ui,l+1} = 0, \dots, y_{ui,L} = 0) = P(y_{ui,l+1} = 0), \quad \forall l.$



Edgewise Optimization Criterion (edgeOpt)

$$P(y_{ui,1} = 1, ..., y_{ui,l} = 1) = P(y_{ui,l} = 1), \quad \forall l;$$

 $P(y_{ui,l+1} = 0, ..., y_{ui,L} = 0) = P(y_{ui,l+1} = 0), \quad \forall l.$

- What does it imply in the objective function?
 - Critical information is included in the 'edges' only

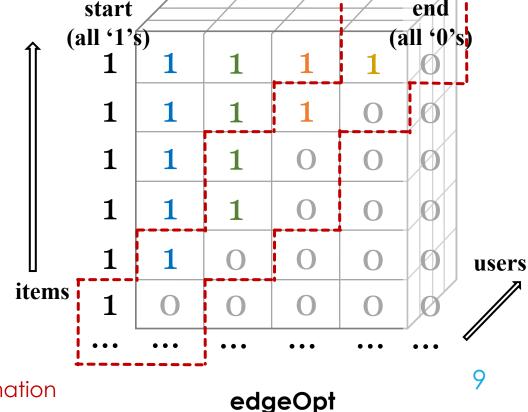
$$\log P(y_{ui,1}, \dots, y_{ui,L}) = \log P(y_{ui,l_{ui}^*} = 1, y_{ui,l_{ui}^*+1} = 0)$$

$$= \log p_{ui,l^*} \underbrace{(1 - p_{ui,l^*+1})}_{p_{ui,\cap}} p_{ui,\cap},$$

The very last positive stage

The very first negative stage

Mutual information on the edge



Algorithm: chainRec

Algorithm 1 chainRec

for each user u, and each item $i \in I_u^+$ do

Locate the last positively interacted stage l_{ui}^* Update the associated parameters Θ_{ui} based on the gradients

monotonic scoring function: $s_{ui,l}$

$$p_{ui,l} = \sigma(s_{ui,l}) = \frac{1}{1 + exp(-s_{ui,l})}$$

$$\frac{\partial}{\partial \Theta_{ui}} \log p_{ui, l_{ui}^*}$$

Update positive example

Algorithm: chainRec

Algorithm 1 chainRec

for each user u, and each item $i \in I_u^+$ do

Locate the last positively interacted stage l_{ui}^* Update the associated parameters Θ_{ui} based on the gradients

$$\frac{\partial}{\partial \Theta_{ui}} \log p_{ui, l_{ui}^*}$$

Update positive example

Sample N contrastive items based on the given sampling scheme

for each contrastive item i' do

Locate the last positively interacted stage $l_{ui'}^*$ Update the associated parameters $\Theta_{ui'}$ based on the gradients

$$\frac{\partial}{\partial \Theta_{ui'}} \left(\log \left(1 - p_{ui', l_{ui'}^* + 1} \right) + \log p_{ui', \cap} \right)$$

Update contrastive example

end for end for The first non-interacted stage

Experiments (Datasets)

- Steam
 - opurchase (100%) play (64%) review (2.2%) recommend (2%)
- YooChoose
 - o click (100%) purchase (45.7%)
- Yelp
 - review (100%) recommend (rating>3, 71.1%)
- GoogleLocal
 - o review (100%) recommend (rating>3, 85%)
- Goodreads (new dataset)
 - shelve (100%) read (49.1%) rate (45.9%) recommend (rating>3, 32%)

Experiments (Results)

Recommendation Results on the Most Explicit Interaction Stage

		(a)			(b)				(c)				
Dataset	Matric	itemPop	borME	WDME	logMF	condME	condTE	elicaTF	sliceTF	chainRec	chainRec	%impr.	%impr.
Dataset	Metric	пешгор	opinir	WINNIF	logwir	condivir	condir	sucerr	(m.)	(uniform)	(stage.)	vs. (a)	vs. (b)
Steam	AUC	0.955	0.963	0.963	0.962	0.961	0.959	0.967	0.957	0.964	0.968	0.44%	0.06%
	NDCG	0.318	0.318	0.314	0.319	0.298	0.310	0.278	0.266	0.319	0.323	1.21%	4.23%
YooChoose	AUC	0.914	0.924	0.920	0.922	0.929	0.920	0.940	0.928	0.951	0.950	2.90%	1.13%
	NDCG	0.140	0.152	0.154	0.150	0.124	0.133	0.185	0.154	0.199	0.176	28.73%	7.09%
Yelp	AUC	0.838	0.921	0.912	0.903	0.900	0.838	0.928	0.918	0.937	0.927	1.71%	0.91%
	NDCG	0.093	0.105	0.096	0.100	0.090	0.088	0.107	0.096	0.108	0.102	3.05%	0.60%
GoogleLocal	AUC	0.597	0.661	0.625	0.661	0.679	0.616	0.684	0.667	0.695	0.722	9.31%	5.69%
	NDCG	0.064	0.067	0.064	0.066	0.064	0.063	0.070	0.065	0.072	0.072	8.36%	2.92%
Goodreads	AUC	0.938	0.971	0.963	0.971	0.904	0.933	0.984	0.934	0.982	0.978	1.17%	-0.17%
	NDCG	0.124	0.125	0.098	0.127	0.072	0.104	0.132	0.121	0.132	0.113	3.94%	0.00%
r-11- 2- D1 C d					1.:/		1.:-1. :	14	11		1!	· · · C 11	1_ TL

Conclusions and Future

- Monotonic Behavior Chain
- chainRec
 - Monotonic scoring function
 - Edgewise Optimization Strategy

- chainRec -> treeRec
- Incorporating features and counts of interactions
- Other areas
 - medical diagnosis: dependencies exist between progressive symptoms

Thanks!

Mengting Wan (<u>m5wan@ucsd.edu</u>)

Data: https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home

Source Code: https://github.com/MengtingWan/chainRec