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ABSTRACT
‘Explicit’ and ‘implicit’ feedback in recommender systems have been
studied for many years, as two relatively isolated areas. However
many real-world systems involve a spectrum of both implicit and
explicit signals, ranging from clicks and purchases, to ratings and
reviews. A natural question is whether implicit signals (which are
dense but noisy) might help to predict explicit signals (which are
sparse but reliable), or vice versa. Thus in this paper, we propose
an item recommendation framework which jointly models this full
spectrum of interactions. Our main observation is that in many
settings, feedback signals exhibit monotonic dependency structures,
i.e., any signal necessarily implies the presence of a weaker (or
more implicit) signal (a ‘review’ action implies a ‘purchase’ action,
which implies a ‘click’ action, etc.). We refer to these structures as
‘monotonic behavior chains,’ for which we develop new algorithms
that exploit these dependencies. Using several new and existing
datasets that exhibit a variety of feedback types, we demonstrate
the quantitative performance of our approaches. We also perform
qualitative analysis to uncover the relationships between di�erent
stages of implicit vs. explicit signals.
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1 INTRODUCTION
User feedback in recommender systems is usually classi�ed into
two categories: ‘explicit’ feedback—where users directly express
their preferences (e.g. ratings), and ‘implicit’ feedback—where users
indirectly reveal their interests through actions (e.g. clicks). These
two paradigms have long been studied as two separate topics and
di�erent techniques have been developed to address each of their
distinct properties.

Beyond the narrow de�nitions of explicit versus implicit feed-
back, we notice that multiple types of user feedback are abundant
in many real-world information systems. For example, users’ views,
clicks, purchases and rating scores are commonly available on e-
commerce platforms. All of these signals re�ect (or imply) users’
interests regarding items from di�erent perspectives. Although
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Figure 1: Illustration of monotonic behavior chains and the
associated item recommendation problems.

there has been a line of work where the connections between im-
plicit and explicit interactions are considered [8, 9, 12, 15, 18–20],
most focus on improving numeric rating predictions by leveraging
other signals as auxiliary information. These studies motivate us
to bridge the gap between implicit and explicit signals, but our
primary goal is to build a uni�ed recommendation framework for
a more general purpose, where several types of user feedback can
be simultaneously considered regardless of their speci�c semantics.
Speci�cally we are interested in (1) how to properly represent a
spectrum of users’ responses; and (2) how to e�ciently harness the
connections among these interactions and provide personalized
item recommendations.
User-Item Interactions as Behavior Chains. We typically ob-
serve relatively a few explicit responses (such as numeric rating
scores), but abundant implicit feedback such as ‘click’ and ‘purchase’
actions. Although these interactions are heterogeneous in terms of
both representations and data distributions, they can be aligned on
what we refer to as ‘behavior chains.’ As shown in Figure 1, di�erent
user-item interactions in e-commerce systems can be encoded as
binary states on a chain, which semantically represents if a user
clicks, purchases, reviews or recommends, (e.g. a rating score larger
than some threshold) the item. Speci�cally, the highlighted vector
(1, 1, 0, 0) in Figure 1 encodes that a user clicked, purchased, but
didn’t review or recommend a product. By following the links on
these chains, users gradually ‘activate’ interaction stages which
increasingly imply more explicit preferences toward items. Such
representations provide us with not only a template to unify dif-
ferent types of interactions but also a prototype to simulate users’
decision-making processes.
Monotonicity on Behavior Chains. One notable property of
such behavior chains is their monotonicity. That is, once a user
decides to ‘stop’ at a stage, then the subsequent interactions by de�-
nition will not be observed. For instance, we cannot observe a user’s
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‘review’ or ‘recommend’ actions if the item was not purchased by
this user. By properly leveraging these monotonicity constraints,
we hope to distinguish critical versus nonessential information.
For instance, ‘not review’ and ‘not recommend’ are nonessential
(i.e., already implied) given that the item was not purchased by
the user. Because of this structure, for each user we can de�ne a
binary matrix on these behavior chains, which starts with the most
implicit (and densest) responses, and ends with the sparsest but the
most explicit responses. In each row of this matrix, elements are
monotonically non-increasing from left to right.
Recommendation on Monotonic Behavior Chains. Based on
the above representations, we can describe our primary goal in this
paper as follows:

Goal: Given historical observations of users’ behav-
ior chains, we seek to estimate their responses toward
unobserved items by appropriately leveraging the mono-
tonicity assumption implied by the data.

Note for each interaction stage on a behavior chain, we are able to
de�ne an associated one-class recommendation problem. We regard
the recommendation performance on the most explicit (i.e., the last)
stage as our primary evaluation criterion but also investigate the
performance with respect to the full interaction spectrum.
Contributions.We describe our contributions as follows.
• We observe a common scenario where multiple types of user-
item interactions can be aligned on a monotonic behavior chain,
and propose a uni�ed item recommendation problem based on
this representation.

• We propose a new algorithm—chainRec which e�ectively mod-
els multiple types of interactions and e�ciently exploits the
monotonicity among these actions. In particular, we design a
scoring function on top of users’ behavioral intentions in order
to make use of all types of responses, explicitly model users’
target intents, and preserve the monotonic constraints in the
resulting user preference scores. We also develop a new optimiza-
tion criterion which takes advantage of the monotonicity and
automatically focuses on the most critical information in users’
feedback data.

• We evaluate the model on �ve di�erent real-world datasets where
our experiments indicate the proposed algorithm substantially
outperforms baselines.

• We contribute a new large-scale dataset (of book reviews) for
this problem. It contains information from more than 200 million
user-item interactions and covers four di�erent interaction types
(shelve – read – rate – recommend).

2 RELATEDWORK
Traditional item recommendation systems often rely on a suite
of collaborative �ltering techniques to learn from explicit feed-
back such as rating scores. Typical model-based techniques include
matrix factorization (MF) methods [13], which seek to learn item
and user embeddings and use the inner product to approximate
observed ratings. As providing explicit feedback often requires ad-
ditional cognitive e�ort [2], these interactions may be sparse or
unavailable in real-world scenarios. In such cases, the above MF

methods can be extended to model the more abundant implicit sig-
nals that are disclosed via users’ observable actions such as clicks
and purchases [7, 17, 22]. In order to address the one-class property
of this setting (i.e., only positive instances can be observed), sev-
eral approaches including the pairwise ranking method BPR [22]
and the pointwise optimization methodWRMF [7, 17] have been
proposed.

Although explicit and implicit data are commonly studied as two
separate topics, there are several studies that seek to connect these
signals [8, 15, 18–20]. These methods are summarized in a recent
survey [9]. Speci�cally in the music recommendation domain, a
positive correlation between implicit (e.g. play counts) and explicit
feedback (e.g. ratings) has been found; regression models thus can
be built to predict users’ rating scores from implicit signals [19, 20].
In addition, a factorized neighborhood model was proposed to
directly estimate users’ ratings where implicit signals are used to
locate and regularize the neighborhood items [12]. Furthermore,
several methods have been proposed to jointly factorize users’
rating scores and implicit responses with shared user and item
latent factors [15, 18]. Unlike these methods which speci�cally
handle numeric (i.e., ‘star’) ratings and regard other feedback as
side-information, we seek to build a framework where several types
of (binary) user feedback can be aligned without giving special
treatment to rating scores.

In a recent study [24], tensor decomposition techniques are ap-
plied to model users’ di�erent types of activities and negative sam-
pling strategies are introduced to address the one-class problem. An-
other line of relevant work includes session-based recommendation
and modeling ‘micro-behavior’ in each user session [3, 6, 14, 23, 25].
These methods di�er from each other in precise details, but they
typically focus on embedding micro-behaviors within each user
session (e.g. views, clicks, dwell time) into a predictive framework
(e.g. a recurrent neural network) to estimate the users’ next actions.
Although all of the above methods seek to fuse users’ activities,
neither of them explores the ‘strength’ of each type of signal or the
potential monotonic dependencies among these activities.

3 PROBLEM DEFINITION AND
PRELIMINARY LEARNING STRATEGIES

In this section, we formally de�ne monotonic behavior chains and
investigate several preliminary learning strategies for the proposed
item recommendation problem. Notation used throughout the paper
is provided in Table 1.

Suppose for a user u and an item i , we have labels for a chain
of user-item interactions Äui = [�ui,1, . . . ,�ui,L]T , where L is the
number of interaction stages and 8l = 1, . . . ,L:

�ui,l =

(
1, if the interaction (u, i) at stage l is observed;
0, otherwise.

That is if a user performs an action (e.g. click) on an item, it is
regarded as a ‘positive’ instance; otherwise, as in traditional one-
class settings, rather than simply treating the non-click as ‘negative,’
it could be that the user is simply not aware of the item, or the cost
is too high (etc.). Typically we expect items interacted with by a user
to be ranked higher than other items in the �nal recommendation.
These behavior chains {Äui } are said to be monotonic if �ui,1 �



Item Recommendation on Monotonic Behavior Chains RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada

… … … …

1
1
1
1
1

1
1
1
1
0

1
1
0
0
0

1
0
0
0
0

0 0 0 0
…

1
1
1
1
1
1

start
(all ‘1’s)

end
(all ‘0’s)

…

0
0
0
0
0
0

users

items

(a) sliceOpt

… … … …

1
1
1
1
1

1
1
1
1
0

1
1
0
0
0

1
0
0
0
0

0 0 0 0
users

items

…

1
1
1
1
1
1

start
(all ‘1’s)

end
(all ‘0’s)

…

0
0
0
0
0
0

(b) condOpt

… … … …

1
1
1
1
1

1
1
1
1
0

1
1
0
0
0

1
0
0
0
0

0 0 0 0
users

items

…

1
1
1
1
1
1

start
(all ‘1’s)

end
(all ‘0’s)

…

0
0
0
0
0
0

(c) edgeOpt

Figure 2: Illustration of di�erent optimization criteria.

Notation Description

U,I,I+u user set, item set, items user u interacted with
I+u,l ,I

�
u,l itemsu interactedwith at stage l ; itemsu did not interact

with at stage l
�ui,l , sui,l observation of user u’s interaction on item i at stage l ,

u’s preference score on item i at stage l
l⇤ui B argmaxl {�ui,l = 1}, the last stage where the inter-

action (u, i) is observed
b0, bi , bu global bias, item bias, user bias
�i , �u , �l item embedding vector, user embedding vector, stage

embedding vector
pui,l B P(�ui,l = 1), marginal probability of user u interact-

ing with item i at stage l
pui,l |l�1 B P(�ui,l = 1|�ui,l�1 = 1), conditional probability of u

interacting with i at stage l given a positive observation
at stage l � 1.

pui,\ B P (�ui,l⇤=1,�ui,l⇤+1=0)
P (�ui,l⇤=1)P (�ui,l⇤+1=0) , the (exponential of the) point-

wise mutual information between two consecutive
stages on the edge of the interaction chain for (u, i).

Table 1: Notation.

�ui,2 � . . . � �ui,L , 8u, i . To simplify notation at boundaries, we
assume two ‘pseudo’ stages l = 0 and l = L + 1, where we always
have �ui,0 = 1 and �ui,L+1 = 0, 8u, i .

Then recommendation problems on these monotonic behavior
chains can be formulated as estimating the ranking scores of un-
observed items (i.e., items that a user has never interacted with) at
each stage, where the same underlying ranking mechanisms can
be used to approximate the observed feedback �ui,l .
LearningPreferences Independent of Stages.Anaïve approach
to solve our problem would be to ignore inter-stage dependencies
and simply learn preference/ranking models for each stage inde-
pendently. A representative objective function for stage l would be
the pointwise binary cross-entropy (e.g. LogisticMF [10], NeuMF
[5]):

�
’
u,i

⇣
�ui,l log� (sui,l ) + cui,l (1 � �ui,l ) log(1 � � (sui,l ))

⌘
(1)

where sui,l is u’s preference ranking score regarding item i , � (·)
is the sigmoid function and cui,l is a customized weight to bal-
ance positive and negative observations. In practice, cui can be

implemented through sampling techniques during training [5, 17].
That is for each positive (u, i) pair in I+u,l = {i |�ui,l = 1}, we can
sample N items with which the user did not interact at stage l ,
compose a ‘balanced’ negative itemset I�

u,l , and update the binary
cross-entropy loss function:

�
’
u

⇣ ’
i 2I+u,l

log� (sui,l ) +
’

i0 2I�
u,l

log(1 � � (sui0,l ))
⌘
. (2)

Another popular objective function is the pairwise ranking loss
(e.g. BPR [22]):

�
’

u,i 2I+u,l ,i0 2I
�
u,l

log� (sui,l � sui0,l ), (3)

which seeks to maximize a pairwise di�erence between observed
positive and unobserved ‘negative’ instances.

Here independent parameters are applied to model the ranking
scores sui,l for di�erent stages; one popular underlying approach
is the latent factor model:

sui,l = b0,l + bi,l + bu,l +
⌦
�i,l , �u,l

↵
, (4)

where for each stage l , b0,l is the global o�set, bi,l ,bu,l are item and
user biases, and�i,l ,�u,l are K-dimensional embeddings to capture
items’ latent features and users’ latent preferences toward these
features. Here h·, ·i denotes the inner product such that

⌦
�i,l , �u,l

↵
captures the ‘compatibility’ between user u and item i on stage l .
Learning Preferences Jointly on Di�erent Stages. Note that
the above models ignore the underlying relationships among di�er-
ent interaction stages. Given that all of these interactions ought to
re�ect users’ preferences from di�erent perspectives, we can extend
the assumption applied in existing studies [15, 18] that better item
and user representations could be learned by jointly modeling dif-
ferent types of interactions. This results in a joint objective function
that extends Eq. (2):

�
’
u,l

⇣ ’
i 2I+u,l

log� (sui,l ) +
’

i0 2I�
u,l

log(1 � � (sui0,l ))
⌘
. (5)

Critically, the preference score sui,l can be modeled by shared item
and user embeddings, combined with a set of stage-speci�c weights
�l on di�erent latent dimensions, i.e.,

sui,l = b0 + bi + bu +
⌦
�l , �i ��u

↵
, (6)

which is equivalent to a variant of the CP/PARAFAC tensor de-
composition framework [1]. Here � denotes the Hadamard product.
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Note that together with the above learning strategies, optimiza-
tion criteria of these approaches focus on the estimations within
each vertical ‘slice’ (i.e., each stage l) of the observation matrices,
but do not involve any horizontal connections among slices such
as the monotonicity we discussed above. We thus refer them as
‘slicewise’ optimizations (sliceOpt, see Figure 2a).
Learning Preferences Conditioned on Previous Stages. We
next aim to explore the ‘monotonicity’ property of these behavior
chains. An obvious assumption would be that any observations of
an interaction stage should be conditioned on the presence of the
previous stage (e.g. a ‘purchase’ action should be conditioned on the
presence of a ‘click’ action). Therefore instead of approximating the
marginal probability of each stage directly, we seek to model the
conditional probability of the behavior ‘escalation’ from a weaker
to a stronger interaction. Speci�cally we consider the following
conditional optimization criterion (condOpt, see Figure 2b):

�
’
u,l

’
i 2I+u,l�1

⇣
�ui,l logpui,l |l�1+cui,l (1��ui,l ) log(1�pui,l |l�1)

⌘

(7)
where pui,l |l�1 is shorthand for P(�ui,l = 1|�ui,l�1 = 1); sim-
ilar sampling techniques as in Eq. (2) can be used. Suppose we
have pui,l |l�1 = � (�ui,l ). Then �ui,l can be factorized using stage-
independent item/user embeddings (Eq. (4)) or shared item/user
embeddings (Eq. (6)). We use the joint probability

sui,l B P(�ui,1 = . . . = �ui,l = 1) =
l÷

l 0=1
pui,l 0 |l 0�1

as the preference ranking score for item recommendations at stage
l . This preference score naturally inherits the monotonicity in the
interaction labels, i.e., sui,1 � . . . � sui,L .

As shown in Figure 2b, this learning strategy gradually narrows
its training scope by conditioning on previous observed interactions.
As positive instances for explicit feedback are relatively scarce, fol-
lowing this conditional optimization criterion may lead to di�culty
capturing behavior escalations that happen at later stages of be-
havior chains. On the other hand, this strategy can be regarded as
being analogous to executing a sequence of ‘AND’ operators on the
interaction chains. That is, in order to reach the most explicit stage,
all of the behavior escalations have to be ‘activated.’ One potential
drawback of this philosophy is that it tends to propagate failures to
the subsequent stages. For example, it is di�cult to interpret a user’s
relative preferences toward (say) an item that has been reviewed but
not recommended versus an item that has been purchased but not
reviewed. Combined with its limitation in handling data scarcity,
the above learning strategy may have di�culty bypassing the noisy,
implicit (and ‘weakly’ negative) data and thus fail to learn users’
preferences accurately. Such an observation motivates us to develop
new techniques to carefully model the internal logic behind the
monotonicity of observed interactions.

4 THE PROPOSED ALGORITHM
Based on the above investigation, we develop a new algorithm—
chainRec—that exhibits the following properties: (1) it takes advan-
tage of all stages of interactions to learn item/user representations
for preference ranking; (2) the ultimate preference scores generated
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Figure 3: Illustration of our monotonic preference scoring
function. In this example, only the behavioral intention
�+ui,2 is activated. The observation �ui,2 = 1 directly comes
from its activated associated intention �+ui,2, while �ui,1 = 1
is derived by its subsequent behavioral intention �+ui,2.

from the model explicitly preserve the monotonicity of the inter-
action matrix; (3) replacing the above ‘AND’ philosophy, we try
to understand which interactions directly come from users’ intrin-
sic behavior intentions, versus which are derived from (stronger)
subsequent intentions.We use two techniques to achieve these prop-
erties: monotonic preference scoring functions and an edgewise
optimization criterion.

4.1 Monotonic Scoring Function
We still model the marginal probability P(�ui,l ) but from a di�erent
prospective:

pui,l B P(�ui,l = 1) = � (sui,l ) =
1

1 + exp(�sui,l )
, (8)

where sui,l is the preference score. Instead of directly decompos-
ing the response �ui,l , we introduce an additional layer for users’
behavioral intentions. Here we use a similar CP/PARAFAC tensor
decomposition format as in Eq. (6) to factorize an intention score
for each stage l :

�ui,l =
⌦
�l , �i ��u

↵
. (9)

We then pass this intention score to a parametric recti�er such that
a user’s speci�c behavioral intention is activated if and only if this
score exceeds zero:

�+ui,l =
1
�
log(1 + exp(��ui,l )). (10)

This recti�er becomes a softplus function when � = 1 and approxi-
mates a recti�ed linear unit (ReLU) as � ! 1:

−2 −1 0 1 2
δ

0.0

0.5

1.0

1.5

2.0

2.5

δ
+

SRftPlus
β=1.2
β=2.0
β=5.0
5eLU

We assume � � 1 is a parameter whichwill be automatically learned
during training.
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On top of this layer, we assume that a user-item interaction
stage can be observed if its associated or subsequent behavioral
intentions are activated (as shown in Figure 3). We encode this soft
logic in the �nal observations as follows:

sui,l = b0 + bi + bu +
L’

l 0=l
�+ui,l 0 . (11)

Note that the most explicit interaction can only be observed when
its associated behavioral intention is activated. By modeling users’
intentions in this format, both preference scores and the resulting
probabilities preserve the monotonicity in observations �ui,l , i.e.,
sui,l � sui,l+1 = �+ui,l � 0.

4.2 Edgewise Optimization Criterion
In addition to this scoring function, we can encode themonotonicity
of�ui,l into a probabilistic framework by enforcing these equivalent
constraints

P(�ui,l 0 = 1|�ui,l = 1) = 1, 8l 0 < l ;
P(�ui,l 0 = 0|�ui,l = 0) = 1, 8l 0 > l ;
P(�ui,1 = 1, . . . ,�ui,l = 1) = P(�ui,l = 1), 8l ;
P(�ui,l+1 = 0, . . . ,�ui,L = 0) = P(�ui,l+1 = 0), 8l .

(12)

These constraints help us prune the redundant information within
the joint probability such that we can obtain the following re-
duced objective function on the ‘edges’ (i.e., two consecutive stages
where users exhibit di�erent responses) of users’ behavior chains
(edgeOpt):’
u,i

log P(�ui,1, . . . ,�ui,L) =
’
u,i

log P(�ui,l ⇤ui = 1,�ui,l ⇤ui+1 = 0)

(13)
where l⇤ui = argmaxl {�ui,l = 1} is the last stage at which the
interaction (u, i) can be observed.1

As shown in Figure 2, edgeOpt di�ers from sliceOpt and con-
dOpt in that it focuses on the most critical signals—observations at
‘edges’ of the behavior chains. The reason edgeOpt allows us to do
this is the previous and the subsequent interactions are already im-
plied by the monotonicity and guaranteed by applying monotonic
scoring functions.

Notice that we are still facing the one-class problem, which
means we generally trust the positive interactions �ui,l ⇤ = 1 but
are not con�dent in unobserved ‘negative’ instances �ui,l ⇤+1 = 0.
Therefore, similar to the weighting techniques used in previous one-
class collaborative �ltering studies [7, 10, 17], we seek to separate
information contained in these two consecutive stages from their
joint probability and rebalance positive and negative instances.
Speci�cally we have

P(�ui,l ⇤ = 1,�ui,l ⇤+1 = 0) = pui,l ⇤ (1 � pui,l ⇤+1) pui,\, (14)

and pui,\ denotes the (exponential of the) pointwise mutual infor-
mation (PMI) between two consecutive stages on the edge

pui,\ B
P(�ui,l ⇤ = 1,�ui,l ⇤+1 = 0)

P(�ui,l ⇤ = 1) P(�ui,l ⇤+1 = 0) .

1For brevity we may omit the subscript ui and use l ⇤ in subsequent paragraphs.

Algorithm 1 chainRec

for each user u, and each item i 2 I+u do
Locate the last positively interacted stage l⇤ui
Update the associated parameters �ui based on the gradients

@

@�ui
logpui,l ⇤ui

Sample N contrastive items based on the given sampling
scheme
for each contrastive item i 0 do

Locate the last positively interacted stage l⇤ui0
Update the associated parameters �ui0 based on the gradi-
ents

@

@�ui0

⇣
log

⇣
1 � pui0,l ⇤ui0+1

⌘
+ logpui0,\

⌘

end for
end for

By applying Eq. (12), Eq. (10) and Eq. (11), we have an explicit
formula to calculate this information:

pui,\ =
pui,l ⇤ � P(�ui,l ⇤ = 1,�ui,l ⇤+1 = 1)

pui,l ⇤ (1 � pui,l ⇤+1)
=

pui,l ⇤ � pui,l ⇤+1
pui,l ⇤ (1 � pui,l ⇤+1)

=1 � exp(��+ui,l ⇤ ).
(15)

Then we obtain the following rebalanced objective:

’
u

⇣ ’
i 2I+u

logpui,l ⇤+
’
i0 2I

cui0,l ⇤
�
log

�
1 � pui0,l ⇤+1

�
+ logpui0,\

� ⌘

⇡
’
u

⇣ ’
i 2I+u

logpui,l ⇤+
’
i0 2Īu

�
log

�
1 � pui0,l ⇤+1

�
+ logpui0,\

� ⌘
.

(16)
We propose the following two sampling schemes to compose the
above contrastive item set Īu :
• Uniform Sampling. cui,l ⇤ / 1. For each positive user-item pair
(u, i) (i.e., lui⇤ > 0), we uniformly sample N items regardless of
their labels;

• Stagewise Sampling. cui,l ⇤ /
|I+u,l⇤+1 |
|I+u,l⇤ |

. For each positive user-

item pair (u, i), we sample N items based on their associated edge
stage l⇤ui .

We brie�y describe the proposed method chainRec in algorithm 1.
Note that, in spite of the relatively complex derivation, the �nal
algorithm is straightforward.We apply a standard `2 regularizer2 on
item and user embeddings �i ,�u and ADAM [11] for optimization.
As our primary goal is to rank unobserved items based users’ most
explicit preferences, we track the cross-entropy loss for the last
stage L on a held-out validation set and stop training once it no
longer decreases. All results are reported on the test set and all
hyperparameters are selected based on the performance on the
validation set.

2The hyperparameter � is selected from {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0}
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Dataset #item #user #interaction distribution of interactions #inter.
/#item

#inter.
/#user

Steam 8,696 24,110 2,447,847 purchase (100.0%), play (64.0%), review (2.2%), recommend (2.0%) 281.49 101.53
YooChoose 19,034 509,126 2,292,077 click (100.0%), purchase (45.7%) 120.42 4.50
Yelp 119,340 1,005,382 4,731,170 review (100.0%), recommend (71.1%) 39.64 4.71
GoogleLocal 539,767 3,063,444 5,968,216 review (100.0%), recommend (85.0%) 11.06 1.95
Goodreads 1,561,465 808,749 225,394,930 shelve (100.0%), read (49.1%), rate (45.9%), recommend (32.0%) 144.35 278.70

Table 2: Basic dataset statistics.

5 EXPERIMENTS
We evaluate chainRec and alternatives on �ve real-world datasets,
where multiple types of user-item interactions are available. In
particular we are interested in determining (1) whether recom-
mendation performance for the sparsest (and thus ‘most explicit’)
feedback can be improved by leveraging other types of interactions;
(2) to what extent accounting for monotonicity can help with rank-
ing performance; (3) whether recommendation performance on
the dense (and implicit) stages can be improved by appropriately
leveraging more explicit signals and monotonicity together.

5.1 Datasets
We consider four public datasets and contribute an additional large-
scale dataset which contains various interaction types. These data
cover di�erent types of behavior chains and vary signi�cantly in
data sparsity.
• Steam [21]. This dataset covers a group of Australian users on
the Steam video game distribution network3 and was recently
introduced for the task of bundle recommendation [21]. This
dataset includes users’ purchase information, play time of games
they purchased, reviews, and thumbs-ups (i.e., ‘recommended’
or ‘not recommended’). Based on these data we are able to build
a ‘purchase – play – review – recommend’ chain for each user-
item pair. Surprisingly, around 36% of purchased games are never
played by users. Similarly the ‘review’ and ‘recommend’ actions
are signi�cantly sparser than the ‘purchase’ and ‘play’ actions
(Table 2).

• YooChoose.4 This is a dataset provided by YooChoose5 in the 2015
RecSys Challenge, which contains a series of click sessions and
the purchase events that occurred in these sessions. Note that
user IDs are not available in this dataset, thus we treat session
IDs as user IDs and build ‘click – purchase’ chains for this data.

• Yelp.6 We use the Round 11 version of the Yelp Challenge data.
We regard the reviews where rating scores are larger than 3 as
‘recommend’ actions and build ‘review – recommend’ behavior
chains.

• GoogleLocal [4]. This dataset covers reviews about local busi-
nesses worldwide. It is a relatively sparse dataset, especially in
terms of the number of interactions per user. We use the same
criteria as the Yelp dataset to build ‘review – recommend’ chains.

3https://store.steampowered.com/
4http://2015.recsyschallenge.com/
5https://www.yoochoose.com/
6https://www.yelp.com/dataset/challenge

• Goodreads. We introduce a new large-scale dataset from the
book review website Goodreads.7 This data contains 229,154,523
records collected from 876,145 users’ public book shelves and
covers 2,360,655 books (with detailed meta-data including au-
thors, series, editions, publishers, numbers of pages, languages of
book contents, similar books and top user-generated shelf names
for these books). Each record contains information of a user’s
multiple interactions regarding an item, including date added to
shelf, reading progress, rating score, and review text if available,
thus making ‘shelve – read – rate – recommend’ chains available
for our recommendation problem.

We apply the same preprocessing criteria for all �ve datasets: we
discard users who have never reached the last stage of any behav-
ior chain and items with fewer than 5 associated interactions in
the system. Statistics and distributions of the above datasets after
preprocessing are included in Table 2. For each dataset, we sam-
ple 100,000 interaction chains for validation and another 100,000
for testing. Within each of these two sets, each interaction chain
corresponds to a di�erent user. Data and code are available at
https://github.com/MengtingWan/chainRec.

5.2 Comparison Methods and Evaluation
Methodology

We consider three groups of methods for comparisons. We �rst con-
sider methods where interaction stages are treated independently:
• itemPop. We count the observed interactions in the training set
as preference scores for each stage. Thus items are ranked based
on their popularity.

• bprMF [22]. Is a state-of-the-art pairwise ranking model for one-
class recommendation. Independent latent factor models (Eq. (4))
are used for di�erent interaction stages.

• WRMF [7, 17]. Is another line of models which optimizes the
mean squared error between estimated preference scores and
labels; additional weights are introduced to adjust unobserved
interactions.

• logMF [10]. Similarly, independent latent factor models are ap-
plied here but the model optimizes a binary cross-entropy loss
as in Eq. (2).

Next we consider alternative methods where the relationships
among di�erent interaction stages are involved.
• condMF.We adopt the conditional optimization criterion (Eq. (7))
and use independent latent factor models (Eq. (4)) to estimate the
conditional probability pui,l |l�1.

7https://www.goodreads.com/
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• condTF.We apply the same optimization criterion but use tensor
decomposition (Eq. (6)) to estimate the conditional probability.

• sliceTF. This is a combination of joint slicewise optimization
(Eq. (5)) and tensor decomposition (Eq. (6)). Notice that this
method can be regarded as extending the philosophy of exist-
ing work which jointly models di�erent types of signals to our
one-class problem on behavior chains [15, 18].

• sliceTF (monotonic). Uses the same learning strategy but re-
places the original tensor decomposition by the monotonic scor-
ing function (Eq. (11)).

Last we evaluate two implementations of the proposed algorithm—
chainRec (uniform) and chainRec (stagewise), where uniform
sampling and stagewise sampling strategies are applied respec-
tively.

By comparing methods from the �rst and the second groups, we
evaluate whether incorporating multiple types of signals simultane-
ously can help with recommendation performance; by comparing
the second and the last group of methods, we evaluate the e�ective-
ness of the proposed techniques to leverage the special monotonic
structure of these behavior chains.

We rank items based on the preference score sui,l for each stage
l , and consider the Area Under the ROC Curve (AUC) as an over-
all ranking metric, and Normalized Discounted Cumulative Gain
(NDCG) as a top-biased evaluation metric. We �x the number of
contrastive samples for each positive user-item pair to N = 1 in all
methods where such procedures are involved (e.g. Eq. (16))

5.3 Quantitative Results
We report detailed results with embedding dimensionality set to
K = 16. We later perform a parameter study to assess sensitivity
with respect to this parameter.

We include results for the primary item recommendation task
in Table 3, where performance is evaluated based on users’ feed-
back at the last stage. From this table we notice that the proposed
chainRec algorithm signi�cantly outperforms other baselines on
most datasets in all metrics, though it performs slightly worse than
sliceTF on Goodreads. One notable advantage of sliceTF is that
its plain linear structure makes it straightforward to optimize. An-
other possible reason for its good performance onGoodreads could
be that it is a relatively dense dataset such that we have su�cient
observations to implicitly learn the monotonicity property with-
out needing to explicitly enforce it via model design. We observe
that the second group of methods generally outperforms the �rst
group of methods, which indicates that incorporating a spectrum of
signals do help to predict the most sparse but explicit feedback. Sur-
prisingly sliceTF consistently outperforms sliceTF (monotonic).
One possible reason could be that monotonic scoring functions be-
have as a kind of regularization on parameters and excessively and
redundantly enforcing them may harm performance. Compared
with this, the success of chainRec particularly validates the e�ec-
tiveness of the proposed edgewise training strategy. Note that the
non-personalized method itemPop performs as a strong baseline
on the Steam dataset, possibly because the collected users’ reviews
are biased towards popular games as they were more likely to be
exposed on the platform.
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Figure 4: Results of item recommendation tasks on all stages
in terms of AUC.
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Figure 5: Sensitivity analysis w.r.t. dimensionality K on two
datasets for the primary item recommendation task.

Next we evaluate item recommendation performance for each
interaction stage separately. Results in terms of the AUC are in-
cluded in Figure 4. For brevity we compare chainRec and two
representative baselines, logMF and sliceTF, from the �rst and
the second groups respectively.8 Here we �nd that chainRec and
sliceTF yield better recommendation results on nearly all stages
compared to training stage-speci�c standalone models (i.e., logMF),
which implies that su�ciently exploiting users’ interaction chains
and appropriately leveraging monotonicity can help us to predict
users’ preferences across all stages generally.

We also vary the embedding dimension K 2 {8, 16, 32, 64, 128}
and report the item recommendation performance at the last stage
on YooChoose andGoogleLocal datasets in Figure 5, where chain-
Rec still dominates other baselines as we increase the dimensional-
ity.

5.4 Qualitative Analysis
We apply the proposed chainRec algorithm on the Goodreads
dataset and conduct case studies to explore the relationships among
di�erent stages.

We �rst seek to understand the stage-speci�c item embeddings
learned from our model, by comparing these representations with
the meta-data of items. We visualize the low-dimensional vectors
of the normalized stage-speci�c item embeddings �i � �l /| |�l | |
in Figure 6 via t-SNE [16]. Here we categorize books into eight
di�erent genres: fantasy/paranormal, history/biography, romance,
mystery/thriller, young adult, comics/graphic, children, and poetry.
These genres are highlighted using di�erent colors in Figure 6,
from which we notice that these genre clusters are signi�cantly
8Other baselines in general perform similarly to or weaker than these two methods.
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(a) (b) (c)

Dataset Metric itemPop bprMF WRMF logMF condMF condTF sliceTF sliceTF
(m.)

chainRec
(uniform)

chainRec
(stage.)

%impr.
vs. (a)

%impr.
vs. (b)

Steam AUC 0.955 0.963 0.963 0.962 0.961 0.959 0.967 0.957 0.964 0.968 0.44% 0.06%
NDCG 0.318 0.318 0.314 0.319 0.298 0.310 0.278 0.266 0.319 0.323 1.21% 4.23%

YooChoose AUC 0.914 0.924 0.920 0.922 0.929 0.920 0.940 0.928 0.951 0.950 2.90% 1.13%
NDCG 0.140 0.152 0.154 0.150 0.124 0.133 0.185 0.154 0.199 0.176 28.73% 7.09%

Yelp AUC 0.838 0.921 0.912 0.903 0.900 0.838 0.928 0.918 0.937 0.927 1.71% 0.91%
NDCG 0.093 0.105 0.096 0.100 0.090 0.088 0.107 0.096 0.108 0.102 3.05% 0.60%

GoogleLocal AUC 0.597 0.661 0.625 0.661 0.679 0.616 0.684 0.667 0.695 0.722 9.31% 5.69%
NDCG 0.064 0.067 0.064 0.066 0.064 0.063 0.070 0.065 0.072 0.072 8.36% 2.92%

Goodreads AUC 0.938 0.971 0.963 0.971 0.904 0.933 0.984 0.934 0.982 0.978 1.17% -0.17%
NDCG 0.124 0.125 0.098 0.127 0.072 0.104 0.132 0.121 0.132 0.113 3.94% 0.00%

Table 3: Results of the primary item recommendation task, which is evaluated based on users’ most explicit feedback. The
best performance is underlined and the last two columns show the percentage improvement of chainRec over the strongest
baseline within each group.

Figure 6: 2d t-SNE visualizations of item embeddings projected on di�erent interaction stages (i.e., �i � �̄l , where �̄l = �l /| |�l | |
is the normalized stage-speci�c scalar). Di�erent languages and genres of books are highlighted using di�erent colors.

visible for ‘read’ and ‘recommend’ actions but especially obscure
for the ‘shelve’ action. This indicates that users tend to shelve books
no matter what genres they belong to, but these features become
important when users decide to read or recommend books. We then
investigate the ‘shelve’ action by highlighting the languages of book
contents in Figure 6. Here we see a clear separation between non-
English books and English books, with the only exception being a
group of Japanese comic books that are mixed with English books.
This observation indicates that language plays an important role
when users shelve books. We further investigate the review texts
associated with these Japanese comic books and �nd that some
English users might have mistakenly shelved Japanese editions
despite the fact that what they read were English editions.

6 CONCLUSIONS AND FUTUREWORK
In this study, we proposed an item recommendation framework
to model the full spectrum of users’ feedback. We observe that
users’ interactions often exhibit monotonic structure, i.e., the pres-
ence of a stronger (or more explicit) interaction necessarily implies
the presence of a weaker (or more implicit) signal. After investi-
gating alternative models, we proposed a new recommendation
algorithm—chainRec which exploits all types of interactions and

e�ciently harnesses their monotonic dependencies. We contribute
a new public dataset and validate the e�ectiveness of chainRec by
quantitative and qualitative results on new and existing datasets.

We note that the monotonicity structures studied in this work are
widely observable and a number of topics can be further explored
along this trajectory. Beyond recommendation tasks, such mono-
tonic dependency structures and the associated predictive models
can potentially be extended to other areas such as (e.g.) medical di-
agnosis where dependencies exist between progressive symptoms.
This monotonic chain structure and the proposed algorithm can
also be extended to more general tree structures, where di�erent
branches (e.g. ‘click–bookmark’ and ‘click–purchase–recommend’
in e-commerce systems) can be modeled simultaneously. Empiri-
cally, we only consider the binary representation of each interaction
stage but counts of interactions (e.g. play counts of music tracks)
could be incorporated as con�dences for these binary observations.
We also plan to investigate more advanced sampling schemes, and
further analysis of the edgewise optimization strategy.
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