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Figure 1: General Workflow: from Truth Discovery to Trust-
worthy Opinion Discovery.

Numerous claims about the same entity can be
collected from multiple sources and they are usu-
ally not consistent. How to integrate and sum-
marize conflicting claims and find reliable infor-
mation?
•Truth Discovery: given conflicting information,
resolve it and find the most trustworthy fact (i.e. the
concept of truth) by introducing source reliability.

•Trustworthy Opinion Discovery: replace the
concept of truth by trustworthy opinion, regard it as a
random variable, estimate its probability distribution
and summarize representative values (i.e. modes)
• categorical data: easy to tackle since claim confidence
scores can be obtained;

• numerical data: nontrivial to model in an
uncertainty-aware way! (we will solve it in this study)

Truth
Discovery

Trustworthy Opinion
Discovery

input entities; claims; sources.

target truth
(fixed value)

trustworthy opinion
(random variable)

output value for truth
probability distribution for opinion
- if truth exists: value for truth
- otherwise: single or multiple

representative values
source

reliability? Yes

multi-modality
detection? No Yes

Anomaly
detection? No Yes

Robust to
outliers?

(numeric data)
No Yes

Table 1: Truth Discovery v.s. Trustworthy Opinion Discov-
ery.

Method

• Intuition: from a fixed value to a random
variable, from a real coordinate space to a
function space.

•Proposed method: Kernel Density Estimation
from Multiple Sources (KDEm)

•Achieve it using kernel techniques, define a
mapping using Gaussian kernel:

Φi : Rd→ Hi

x 7→ Khi
(·,x) := Φi(x)

Output format with and without modeling
source reliability: (i: entity; j: source)

sample mean︷ ︸︸ ︷
1

mi

∑
j∈Si

xij 7→

sample mean function, i.e. KDE︷ ︸︸ ︷
1

mi

∑
j∈Si

Φi(xij)
weighted sample mean︷ ︸︸ ︷

1
mi

∑
j∈Si

wijxij 7→

weighted sample mean function︷ ︸︸ ︷
1

mi

∑
j∈Si

wijΦi(xij)

We need to find fi ∈ Hi, i = 1, ..., n and cj ∈ R+,
j = 1, ..., m, which can minimize

J(f1, ..., fn; c1, ..., cm) = n∑
i=1

1
mi

∑
j∈Si

cj‖Φi(xij)−fi‖2
Hi

where c1, ..., cm satisfy
m∑

j=1
nj exp(−cj) = 1.

The algorithm to solve proposed optimization
problem:

(a) Initialize c
(0)
1 = ... = c

(0)
j = ... = c(0)

m ;
(b) Update opinion density function f̂i by f̂

(k+1)
i = ∑

j∈Si
w

(k)
ij Φi(xij),

where w
(k)
ij = c

(k)
j∑

j′∈Si
c

(k)
j′
, i = 1, ..., n;

(c) Update source reliability score cj by

c
(k+1)
j = − log


1
nj

∑
i∈Nj

1
mi
‖Φi(xij)− f̂

(k+1)
i ‖2

Hi

∑m
j′=1

∑
i∈Nj′

1
mi
‖Φi(xij′)− f̂

(k+1)
i ‖2

Hi

 ;

j = 1, ..., m

(d) Repeat (b) and (c) until the total loss J(f1, ..., fn; c1, ..., cm) does
not change.

The output for fi is defined as the density es-
timation for the trustworthy opinion of the i-
th entity. Then we can summarize representa-
tive values based on the density functions (eg.
DENCLUE[1]).

Entity 1 Entity 2 Entity 3 Entity 4
Source 1 1.00 3.00 1.00 0.95
Source 2 1.10 3.10 0.90 1.00
Source 3 0.90 -3.00 - -
Source 4 - -3.10 1.10 1.05
Source 5 5.00 5.00 -5.00 5.00
Source 6 - -2.90 - -
Source 7 - -3.05 - -

Table 2: Ex.1: A toy example for trustworthy opinion dis-
covery.

Figure 2: Probability density estimation for Entity 2 in Ex.1.

Experiment

Task 1: Traditional truth discovery from con-
taminated data (single truth existence can be en-
sured).

• Performance measure: Rooted
Mean Squared Error (RMSE)
and Mean Absolute Error
(MAE).

• Datasets: Synthetic(unimodal)
and Population(outlier) dataset
[2].

• Baselines: KDE [3], RKDE
[4], Mean, Median, Voting,
TruthFinder[5], AccuSim[6],
GTM[7], CRH[8] and
CATD[9].

• Result: our method KDEm
has the best performance.

Method MAE RMSE
KDEm 1547 8884
KDE 1630 8900
RKDE 1687 9093
Mean 200917 1136605
Median 11075 129850
Voting 18813 259066

TruthFinder 1551 8892
AccuSim 20819 259948
GTM 317444 1989964
CRH 219596 1289422
CATD 53750 304781

Table 3: Results on the Popu-
lation(outlier) dataset.

Figure 3: Results on the synthetic uni-modal datasets Syn-
thetic(uni).

Experiment (Continued)

Task 2: Multi-modality detection and anomaly
detection (truth existence cannot be ensured).
• Performance measure: Area Under Curve (AUC).
• Dataset: Synthetic(mix) and Tripadvisor [10] (review rating scores

for 8 aspects: value, rooms, location, cleanliness, check in/front
desk, service, business service and overall).

• Baselines: KDE [3] and RKDE [4].
• Result: our method KDEm has the best performance.

Figure 4: Results on synthetic
mixed multi-modal datasets Syn-
thetic(mix).

Figure 5: Example histograms in
Tripadvisor(location).

Figure 6: Pairwise correlation of source reli-
ability scores and predicted numbers of modals
for the Tripadvisor datasets.

• Darker ellipse
indicates stronger
correlation.

• For source reliability
scores, the correlation
is calculated based on
sources which provide
claims for both
aspects of interest.
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Contact Information

• Data and code: https://github.com/MengtingWan/KDEm
• Email: m5wan@ucsd.edu
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