Representing and Recommending Shopping Baskets with Complementarity, Compatibility, and Loyalty

Mengting Wan, Di Wang, Jie Liu, Paul N. Bennett, Julian McAuley* University of California, San Diego† Microsoft Corporation

Oct. 2018

Automated Grocery Shopping

Online grocery shopping platforms

• Amazon Fresh, Instacart, etc.

Physical checkout-free grocery stores

O Amazon Go, etc.

Mobile scanners, mobile grocery apps O Various predictive tasks

- Personalized product
 recommendation
- Automated product classification
- Retail sales prediction & inventory optimization

O etc.

Go organic with our wid selection

Product Representation & Recommendation

O Product Representation

O Meaningful & Useful

O triple2vec

Purchase Prediction / Product Recommendation

O Effective & Accurate

O adaLoyal

Domain-Specific Shopping Patterns

Latent functions for complementarity may need to match users' preferences (user-item compatibility) as well

Grocery Product Representation & Recommendation

O Product Representation

• triple2vec: representations with **complementarity** & **compatibility**

O Product Recommendation

O adaLoyal: Adaptively Updating and Estimating Product Loyalty

Product Representation Learning (Background)

Variants of word2vec

- Use a target word/product to predict contextual words/products
- Item2vec, prod2vec, etc.
- O Unsupervised Approach
 - Outcome: low-dim representations for each product
- Useful for various downstream tasks
 - Product classification
 - O Product recommendation

$$\mathcal{L}_{sgn} = \sum_{v} \sum_{v' \in C_v} \log P(v'|v). \quad P(v'|v) = \frac{\exp(f_v^T g_{v'})}{\sum_{v''} \exp(f_v^T g_{v''})}$$

triple2vec: Representations from Triples

 Cohesion Score: modeling within-basket item-to-item complementarity, and across-basket user-to-item compatibility together

item-to-item complementarity

$$s_{i,j,u} = \overbrace{f_i^T g_j}^T + \overbrace{f_i^T h_u}^T h_u, \quad P(i|j,u) = \frac{\exp(s_{i,j,u})}{\sum_{l'} \exp(s_{l',j,u})}$$
user-to-item compatibility

$$i_1 \quad i_2 \quad i_3 \quad i_4 \quad i_5 \quad i_5 \quad i_5 \quad i_6 \quad$$

triple2vec

(Un

(114)

(**u**1)

Iteratively 'knock out' a node and use the other two nodes to predict it

$$\mathcal{L} = \sum_{(i,j,u)\in\mathcal{T}} \left(\log P(i|j,u) + \log P(j|i,u) + \log P(u|i,j)\right),$$

Grocery Product Representation & Recommendation

O Product Representation

O triple2vec: representations with complementarity & compatibility

O Product Recommendation

• adaLoyal: Adaptively Updating and Estimating **Product Loyalty**

From Product Representation to Recommendation

- Generalize from contextual products to a new product based on their low-dim representations
 - cosine(contextual products, candidate product)
 - inner-product(user, candidate product)
 - cohesion-score (user, contextual products, candidate product)

item-to-item complementarity

$$s_{i,j,u} = f_i^T g_j + \underbrace{f_i^T h_u + g_j^T h_u}_{I},$$

user-to-item compatibility

Generalization & Memorization

Grocery shopping

Numerous re-purchased products

- User-item interaction matrix is not always low-rank
- Significant 'high-rank' patterns can be memorized by counting some statistics (purchase frequency)
- How to balance 'memorization' and 'generalization'?

Product Loyalty: Preferences Beyond Expectations

- adaLoyal: adaptively estimating product loyalty $l_{i,u}^{(t)}$
 - Scan a user's transaction logs chronologically:
 - if a new product is observed, we activate its corresponding loyalty $l_{i,u}^{(t)}$ and set it to be a given initial value l_0
 - if a product has been purchased before, *l*^(t)_{i,u} is <u>updated based on the posterior distribution</u> of the loyalty indicator

An incremental module, can be applied

on top of almost any recommenders!

• Final prediction is a mixture of frequency model and representation model

$$\tilde{p}_{i,u}^{(t)} = l_{i,u}^{(t-1)} \mu_{i,u}^{(t-1)} + (1 - l_{i,u}^{(t-1)}) p_{i,u}$$

$$\text{memorization} \qquad \text{generalization}$$

$$\text{if } x_{i,u}^{(t)} = 1 \text{ then}$$

$$\text{assign } l_{i,u}^{(t)} = \frac{l_{i,u}^{(t-1)} \mu_{i,u}^{(t-1)} + (1 - l_{i,u}^{(t-1)}) p_{i,u}}{l_{i,u}^{(t-1)} \mu_{i,u}^{(t-1)} + (1 - l_{i,u}^{(t-1)}) p_{i,u}}$$

$$\text{else}$$

$$\text{assign } l_{i,u}^{(t)} = \frac{l_{i,u}^{(t-1)} (1 - \mu_{i,u}^{(t-1)})}{l_{i,u}^{(t-1)} (1 - \mu_{i,u}^{(t-1)}) + (1 - l_{i,u}^{(t-1)}) (1 - p_{i,u})}$$

Experiments (Datasets)

- O Dunnhumby
 - o public dataset, physical grocery store chain, household-level, frequent shoppers
- Instacart
 - public dataset, online shopping (same-day grocery delivery web service), frequent shoppers
- MSR-Grocery (WA)
 - proprietary dataset, physical convenient store, less frequent shoppers, smaller basket size
- MSR-Grocery (UT)
 - proprietary dataset, physical mid-size stores, mixture of college students and regular households

Experiments (Product Classification)

	Dunnhumby		Instacart		Grocery(WA)		Grocery(UT)	
Method	micro	macro	micro	macro	micro	macro	micro	macro
item2vec	0.665	0.108	0.377	0.283	0.608	0.345	0.620	0.239
prod2vec	0.617	0.066	0.330	0.218	0.480	0.212	0.491	0.093
m.2vec	0.627	0.071	0.331	0.221	0.441	0.144	0.484	0.067
triple2vec	0.669	0.114	0.382	0.294	0.581	0.361	0.623	0.293

(a) F1 metrics on coarse-grained (department) classification

	Dunnhumby		Instacart		Grocery(WA)		Grocery(UT)		
Method	micro	macro	micro	macro	micro	macro	micro	macro	
item2vec	0.160	0.046	0.187	0.075	0.518	0.010	0.275	0.094	
prod2vec	0.087	0.015	0.106	0.030	0.518	0.009	0.119	0.023	
m.2vec	0.078	0.007	0.155	0.036	0.518	0.007	0.091	0.008	
triple2vec	0.175	0.049	<u>0.189</u>	0.082	0.519	0.010	<u>0.291</u>	0.097	

-

(b) F1 metrics on fine-grained (category) classification

Case Studies (Similarity Search)

	the inner product	$f_v^T g_v$	C	osine similarity based	d on f_v -	+ g _v
Best selling product in a typical grocery store (US)?	Product	Query: "Ba	anana"		
101-0	Complements		Score	Competitors	Score	
Mu.	Whole Milk With Vit	Vhole Milk With Vitamin D		Fuji Apple	0.97	
	Plain Yogurt		3.11	Honeycrisp Apple	0.96	
	Apple Blueberry Gran	nola	3.06	Cucumber Kirby	0.93	
	Orange Navel		3.01	Large Lemon	0.92	
	Milk Chocolate Nutrition Shake		e 2.99	Large Grapefruit	0.92	
	Product Query: "Organic Banana"					
OV ⁰	Complements	Score	Competito	ors	Score	
	Organic Papaya	3.72	Organic Str	awberries	0.96	*
	Organic 2% Milk	3.69	Organic Ra	spberries	0.94	
	Carbonated Water	3.66	Organic Blu	ueberries	0.94	
Complement and competitor search for "Banana" and	Organic Bosc Pears	3.61	Organic Ha	iss Avocado	0.93	14
Organic Banana in an online grocery snopping dataset (Instacart)	Organic Applesauce	3.55	Organic La	rge Extra Fuji Apple	0.92	

Experiments (Product Recommendation)

- Two recommendation tasks
 - O Next-Basket Recommendation
 - O Within-Basket Recommendation
- O Evaluation metrics:
 - AUC (overall ranking)
 - NDCG (top-biased ranking)

- Proposed method
 - triple2vec
 - triple2vec + adaLoyal
- O Baselines
 - O Unsupervised baselines
 - itemPop, user-wise itemPop
 - item2vec, prod2vec, metapath2vec
 - O Unsupervised baselines +adaLoyal, +BPR
 - Supervised baselines: BPR-MF, FPMC

Experiments (Product Recommendation)

- triple2vec + adaLoyal generally outperforms other methods
 - Leveraging complementarity, compatibility and loyalty are useful
- O Applying adaLoyal consistently & significantly boost recommendation performance
 - Modeling user-product loyalty is very important for grocery shopping recommendation
- Results from user-wise purchase frequency are even better than supervised methods (BPR-MF & FPMC) in terms of NDCG
 - Please do not neglect the naïve method purchase frequency. Its memorization power is surprisingly useful for recommending grocery products.

Repurchases vs. New purchases

- How did adaLoyal balance these two?
 - **Repurchases:** boost to the upper bound provided by user-wise itemPop (memorization)
 - New purchases: scarifies very limited performance when applying adaLoyal (generalization)

Case Studies (Product Loyalty - User)

U

User A $(l_u = 1.00)$	User B ($l_u = 0.57$)	User C ($l_u = 0.37$)
Sparkling Water, Bottles	Spinach Artichoke Dip, Taboule Salad,	Olive Oil Soap, Citrus Castile Soap, Peppermint Castile Soap
Sparkling Water, Bottles	Packaged Grape Tomatoes	Coconut Chips - Sea Salt, Coconut Chips - Original
Sparkling Water, Bottles	Bag of Organic Bananas, Taboule Salad	Compostable Forks
Sparkling Water, Bottles	Fuji Apples, Seedless Cucumbers,	Grunge Buster Grout And Tile Brush
Sparkling Water, Bottles	Bag of Organic Bananas, Sweet Kale Salad Mix	Pumpkin Seed Cheddar Crispbreads, Seedlander Crispbreads
Sparkling Water, Bottles	Spinach Artichoke Dip, Seedless Red Grapes,	Zinc Target Mins 50 Mg Gluten Free Tablets

Conclusions

- Three patterns in users' grocery baskets
 - Complementarity, Compatibility, Loyalty
- A product representation learning method
 - triple2vec
- A recommendation algorithm
 - o adaLoyal

- Quantitative and qualitative results product classification& recommendation tasks
- A lot of insights in grocery shopping domain

Mengting Wan (<u>m5wan@ucsd.edu</u>)