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Abstract

This paper presents computational approaches
for automatically detecting critical plot twists
in reviews of media products. First, we cre-
ated a large-scale book review dataset that
includes fine-grained spoiler annotations at
the sentence-level, as well as book and
(anonymized) user information. Second, we
carefully analyzed this dataset, and found that:
spoiler language tends to be book-specific;
spoiler distributions vary greatly across books
and review authors; and spoiler sentences tend
to jointly appear in the latter part of re-
views. Third, inspired by these findings, we
developed an end-to-end neural network ar-
chitecture to detect spoiler sentences in re-
view corpora. Quantitative and qualitative re-
sults demonstrate that the proposed method
substantially outperforms existing baselines.

1 Introduction

‘Spoilers’ on review websites can be a concern
for consumers who want to fully experience the
excitement that arises from the pleasurable un-
certainty and suspense of media consumption
(Loewenstein, 1994). Certain review websites al-
low reviewers to tag whether their review (or sen-
tences in their reviews) contain spoilers. However,
we observe that in reality only a few users utilize
this feature. Thus, requiring sentence-level spoiler
annotations from users is not a successful ap-
proach to comprehensive fine-grained spoiler an-
notation. One possible solution is crowdsourcing:
whereby consumers can report reviews that reveal
critical plot details. This is complementary to the
self-reporting approach, but may have scalability
issues as it is relatively difficult to engage suffi-
cient consumers in a timely fashion. Therefore, we
seek to address the lack of completeness exhibited
by self-reporting and crowdsourcing. We instead
focus on developing machine learning techniques

• This was a perfect, albeit bloody, end to the series.
• Though there were deaths that were definitely unwarranted: 

<spoiler>Fred Hedwig Moody Tonks Lupin Dobby,</spoiler> there 
were some really heartfelt and memorable moments:
<spoiler>Narcissa saving Harry, Ron coming back, Hermione and 
Ron, Harry and Ginny, Molly killing Bellatrix, etc.</spoiler>

• I wish we could have spent more time at Hogwarts, as one of my 
favorite characters, the amazing Minerva McGonagall, resides there, 
and we couldn’t see more of her amazingness in the Battle of 
Hogwarts. 

• Harry Potter was a really, really great series that I think will be (and 
is) timeless. 

Harry Potter and the Deathly Hallows
www.goodreads.com/book/show/136251
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predictions from SpoilerNet review document

review subject (i.e., item)

review author (i.e., user)

Figure 1: An example review from Goodreads, where
spoiler tags and the predicted spoiler probabilities from
SpoilerNet are provided.

to automatically detect spoiler sentences from re-
view documents.

Related Work. Surprisingly, we find that spoiler
analysis and detection is a relatively unexplored
topic; previous work focuses on leveraging sim-
ple topic models (Guo and Ramakrishnan, 2010),
or incorporating lexical features (e.g. unigrams)
(Boyd-Graber et al., 2013; Iwai et al., 2014),
frequent verbs and named entities (Jeon et al.,
2013), and external meta-data of the review sub-
jects (e.g. genres) (Boyd-Graber et al., 2013) in a
standard classifier such as a Support Vector Ma-
chine. Deep learning methods were first applied to
this task by a recent study (Chang et al., 2018),
where the focus is modeling external genre infor-
mation. Possibly due to the lack of data with com-
plete review documents and the associated user
(i.e., the review author) and item (i.e., the sub-
ject to review) ids, issues such as the dependency
among sentences, the user/item spoiler bias, as
well as the sentence semantics under different item
contexts, have never been studied in this domain.

Neural network approaches have achieved great
success on sentence/document classification tasks,
including CNN-based approaches (Kim, 2014),
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Figure 2: Distributions of (a) average spoiler sentence position; (b) the length of each spoiler span; (c) item-
specificity of non-spoiler and spoiler sentences (sample means and 95% confidence intervals); (d) DF-IIF of each
term and top ranked item-specific terms for an example book; (e) the percentage of spoiler reviews per book/user.

RNN-based approaches (Yang et al., 2016), and
self-attention-based approaches (Devlin et al.,
2018). In this study, we cast the spoiler sentence
detection task as a special sentence classification
problem, but focus on modeling domain-specific
language patterns.

Contributions. To address real-world, large-scale
application scenarios and to facilitate the possi-
bility of adopting modern ‘data-hungry’ language
models in this domain, we collect a new large-
scale book review dataset from goodreads.com.
Spoiler tags in this dataset are self-reported by the
review authors and are sentence-specific, which
makes it an ideal platform for us to build super-
vised models. Motivated by the results from pre-
liminary analysis on Goodreads, we propose a
new model SpoilerNet for the spoiler sentence de-
tection task. Using the new Goodreads dataset and
an existing small-scale TV Tropes dataset (Boyd-
Graber et al., 2013), we demonstrate the effective-
ness of the proposed techniques.

2 The Goodreads Book Review Dataset

We scraped 1,378,033 English book reviews,
across 25,475 books and 18,892 users from
goodreads.com, where each book/user has at least
one associated spoiler review. These reviews in-
clude 17,672,655 sentences, 3.22% of which are
labeled as ‘spoiler sentences.’ To our knowledge,
this is the first dataset with fine-grained spoiler
annotations at this scale. This dataset is available
at https://github.com/MengtingWan/
goodreads.

Appearance of Spoiler Sentences. We first ana-
lyze the appearance of spoiler sentences in reviews
by evaluating 1) the average position of spoiler
sentences in a review document and 2) the aver-
age number of sentences in a spoiler span (a se-
ries of consecutive spoiler sentences). We present
the first evaluation in Figure 2a. Compared with

the expected average position of randomly sam-
pled sentences (0.5), we observe that spoiler con-
tents tend to appear later in a review document. For
the second evaluation, we create a benchmark dis-
tribution by randomly sampling sentences within
reviews and averaging the length of each span
formed by those sentences. From Figure 2b, com-
pared with this random benchmark, we notice that
real-world spoiler sentences tend to be ‘clumped’
(i.e., more sentences in each span).

Item-Specificity. As book-specific terms such as
locations or characters’ names could be informa-
tive to reveal plot information (Jeon et al., 2013),
we develop an effective method to identify the
specificity of tokens regarding each item (i.e., each
book) as follows:1

• (Popularity) For word w, item i, we calcu-
late the item-wise document frequency (DF) as
DFw,i =

|Dw,i|
|Di| ;

• (Uniqueness) For each word w, we calculate
its inverse item frequency (IIF) as IIFw =

log |I|+ε|Iw|+ε ;
• Then for each term w, item i, we are able to

obtain the DF-IIF as DFw,i × IIFw.

We show the distributions of the average DF-
IIF values of randomly sampled non-spoiler and
spoiler sentences in Figure 2c, where we find
spoilers are likely to be more book-specific. The
ranking of terms for the book Harry Potter #7
is presented in Figure 2d, where we find that all
of the top 10 terms refer to the character/author
names and important plot points.

Item/User Spoilers and Self-Reporting Bias. We
further investigate the fraction of reviews contain-
ing spoiler content per item/user to analyze the
spoiler appearance tendencies for each item and

1|Di|: #reviews associated with i; |Dw,i|: #reviews con-
taining word w; |Iw|: #items containing w; |I|: the total
number of items. ε = 1 is a smoothing term.

https://github.com/MengtingWan/goodreads
https://github.com/MengtingWan/goodreads
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Figure 3: Model architecture of SpoilerNet

user (Figure 2e). We notice that the distributions
are highly skewed indicating significantly differ-
ent spoiler tendencies across users and items.
Summary of Insights. We summarize the ob-
tained insights as follows: 1) Spoiler sentences
generally tend to appear together in the latter part
of a review document, which indicates the depen-
dency among sentences and motivates us to con-
sider encoding such information in a spoiler de-
tection model; 2) Item-specificity could be useful
to distinguish spoiler contents; 3) Distributions of
self-reported spoiler labels are dramatically differ-
ent across users and items, which motivates us to
explicitly calibrate them in the model design.

3 The Proposed Approach: SpoilerNet

We formulate the predictive task as a binary clas-
sification problem: given a sentence s in a review
document, we aim to predict if it contains spoilers
(ys = 1) or not (ys = 0).

We introduce SpoilerNet, which extends the hi-
erarchical attention network (HAN) (Yang et al.,
2016) by incorporating the above insights. We use
the sentence encoder in HAN to model the se-
quential dependency among sentences. We incor-
porate the item-specificity information in the word
embedding layer to enhance word representations
based on different item (e.g. book) contexts. Item
and user bias terms are included in the output layer
to further alleviate the disparity of spoiler distri-
butions. Figure 3 shows the overall architecture
of our proposed SpoilerNet. We briefly describe
each layer of this network as follows.
Input Layer. For each word w, we introduce a
K-dimensional text embedding ew to represent
its lexical information, which is shared across the

corpus. For each word in each sentence, we cal-
culate its corresponding item specificity features:
fw,i = [DFw,i, IIFw,DFw,i × IIFw]. We ex-
pect this component could help distinguish differ-
ent word semantics under different contexts (e.g.,
‘Green’ indicates a character’s name with high
item-specificity while it represents a color other-
wise). The concatenated vector [ew;fi,w] is used
as the input word embedding of word w in sen-
tence s.
Word Encoder, Word Attention, and Sentence
Encoder. Next we pass words through bidirec-
tional recurrent neural networks (bi-RNN) with
Gated Recurrent Units (GRU) (Cho et al., 2014).
GRUs accept a sequence of input embedding vec-
tors xt and recursively encode them into hid-
den states ht. Words are fed sequentially through
a GRU and in reverse order through another
GRU. Then we use the concatenation of these for-
ward and backward hidden state vectors hw =
[h

(f)
w ;h

(b)
w ] to represent a word w in a sentence s.

Then we introduce a word attention mechanism
to focus on revelatory words (e.g., ‘kill’, ‘die’),
which yields

µw =tanh(Wahw + ba),

αw =
exp(νTµw)∑

w′∈s, exp(ν
Tµw′)

, vs =
∑
w∈s

αwhw,

where Wa, ba and ν are model parameters. The
weighted sums vs are used as an input vector to
represent sentence s in the following sentence-
level model.

Within each review, we pass the sentence input
vectors {vs} to another bi-RNN with GRU to en-
code the sequential dependency among sentences.
We concatenate the resulting forward and back-
ward hidden states to get the final representation
of a sentence, i.e., hs = [h

(f)
s ;h

(b)
s ].

Output Layer. The spoiler probability of a sen-
tence s can be calculated as

ps = σ(wT
o hs + bi + bu + b).

Here for each item i and each user u, we intro-
duce learnable parameters bi, bu to model the item
and user biases which can not be explained by the
language model. Then we consider minimizing the
following training loss

L =
∑

(ys log ps + η(1− ys) log(1− ps)) ,

where η is a hyper-parameter used to balance pos-
itive and negative labels in the training data.
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4 Experiments

We consider the following two datasets:
Goodreads. We use the top 20,000 frequent uni-
grams as our vocabulary. We randomly select 20%
of the reviews for testing. Among the remaining
80%, we separate 10,000 reviews for validation
and use all other reviews for training. As the distri-
bution of spoiler labels is severely imbalanced, we
decrease the weight of negative labels to η = 0.05,
which yields best results among {0.05, 0.1, 0.2,
0.5} on the validation set.
TV Tropes is a small-scale benchmark dataset
collected from tvtropes.org (Boyd-Graber et al.,
2013). This dataset contains 16,261 single-
sentence comments about 884 TV programs,
which have been partitioned into 70/10/20 train-
ing/validation/test splits. All unigrams are kept in
the vocabulary. As it is a balanced dataset (52.72%
of the sentences are spoilers), we set η = 1.

We use the ADAM optimizer (Kingma and Ba,
2014) with a learning rate of 0.001, a fixed batch
size (64) and dropout (0.5) in the fully connected
output layer. The dimensionalities of all hidden
states and the context attention vector ν are set
to 50. Word embeddings are initialized with pre-
trained fasttext word vectors (Joulin et al., 2016).

Baselines. We consider the following baselines:
• SVM. Similar to previous studies (Boyd-

Graber et al., 2013; Jeon et al., 2013), we ap-
ply SVM with a linear kernel where counts of
words are used as features.
• SVM-BOW. Weighted averages of fasttext

word embeddings (Joulin et al., 2016) are used
as sentence features, where the weights are Tf-
Idfs.
• CNN. textCNN (Kim, 2014) is applied where

we use filter sizes 3,4, and 5, each with 50 fil-
ters.
• HAN. The item-specificity features and the

item/user bias terms are removed from Spoiler-
Net. This can be regarded as a variant of HAN
(Yang et al., 2016).

We add the item-specificity features and the
item/user bias respectively on the above baselines
to evaluate their effectiveness. We remove each of
the word attention module, the pre-trained word
embedding initialization, and the sentence encoder
from HAN to evaluate their performance.

Evaluation. Due to the possible subjectivity of
users’ self-reported spoiler tags (i.e., different

Goodreads TV Tropes
AUC AUC(d.) AUC Acc.

SVM 0.744 0.790 0.730 0.657
+ item-spec. 0.746 ↑ 0.800 ↑ 0.747 ↑ 0.653 ↓
+ bias 0.864 ↑ 0.793 ↑ 0.722 ↓ 0.536 ↓

SVM-BOW 0.692 0.729 0.756 0.702
+ item-spec. 0.693 ↑ 0.734 ↑ 0.774 ↑ 0.710 ↑
+ bias 0.838 ↑ 0.742 ↑ 0.753 ↓ 0.704 ↑

CNN 0.777 0.825 0.774 0.709
+ item-spec. 0.783 ↑ 0.827 ↑ 0.790 ↑ 0.723 ↑
+ bias 0.812 ↑ 0.822 ↓ 0.781 ↑ 0.711 ↑

- word attn. 0.898 ↓ 0.880 ↓ 0.760 ↓ 0.695 ↓
- word init. 0.900 ↓ 0.880 ↓ 0.702 ↓ 0.652 ↓
- sent. encoder 0.790 ↓ 0.836 ↓ - -
HAN 0.901 0.884 0.783 0.720
+ item-spec. 0.906 ↑ 0.889 ↑ 0.803 ↑ 0.733 ↑
+ bias 0.916 ↑ 0.887 ↑ 0.789 ↑ 0.729 ↑
SpoilerNet 0.919 0.889 0.803 0.737

Table 1: Spoiler sentence detection results on
Goodreads and TV Tropes, where arrows indicate the
performance boost (↑) or drop (↓) compared with the
base model in each group. Best results are highlighed.

users may maintain different standards for vari-
ous review subjects), we regard the area under
the ROC curve (AUC) as our primary evaluation
metric, i.e., we expect a positive spoiler sentence
is ranked higher than a negative non-spoiler sen-
tence based on ps. For Goodreads, we also cal-
culate the sentence ranking AUC within each re-
view document and report the average across re-
views. Note this averaged document AUC is in-
variant of item/user self-reporting bias, thus the
language model can be evaluated exclusively. We
also report accuracy on TV Tropes so that our re-
sults can be fairly compared with existing studies
(Boyd-Graber et al., 2013; Chang et al., 2018).

Results. Spoiler detection results are presented in
Table 1, where the complete SpoilerNet model
consistently and substantially outperform base-
lines on both datasets. The accuracy that Spoil-
erNet achieved on TV Tropes beats the highest
one among existing methods without using exter-
nal item genre information (0.723), but is slightly
lower than the best published result (0.756) where
a genre encoder is applied (Chang et al., 2018). We
notice adding the item-specificity and user/item
bias generally improves the performance of most
baselines except SVM on TV Tropes. We find the



2609

pre-trained word embedding initialization is par-
ticularly important on TV Tropes. One possible
reason could be that the model capacity is too large
compared with this dataset so that it easily overfits
without proper initialization. Note that a substan-
tial performance drop can be observed by remov-
ing the sentence encoder on Goodreads, which
validates the importance of modeling sentence de-
pendency in this task.

5 Error Analysis

We provide case studies to understand the limi-
tations of the proposed model. We show review
examples for three popular books Murder on the
Orient Express, The Fault in Our Stars, and The
Hunger Games respectively. For each example,
we provide the review text, the groudtruth spoiler
tags (i.e., if a sentence contains spoilers or not)
and the predicted spoiler probabilities from Spoil-
erNet.
Distracted by Revelatory Terms. We find the
majority of false positively predicted sentences
from SpoilerNet can be found in this category.
As shown in Table 2, the proposed network could
be easily distracted by revelatory terms (e.g. ‘mur-
der’, ‘killed’). This leads to a potential direction
for improvement: emphasizing ‘difficult’ negative
sentences with revelatory terms during training
(e.g. by ‘hot’ negative sampling) such that the se-
mantic nuances can be addressed.

Prob. Label Review Text

0.35 False Language: Low (one/two usages of d*mn)
0.32 False Religion: None
0.39 False Romance: None
0.59 False Violence: Low (It’s a murder mystery! Some-

one is killed, but it is only ever talked about.)

Table 2: An example review for the book Murder on
the Orient Express.

Distracted by Surrounding Sentences. Although
the model is able to capture the ‘coagulation’ of
spoilers (i.e., spoiler sentences tend to appear to-
gether), it can be distracted by such a property
as well. As presented in Table 3, the third sen-
tence was mistakenly predicted possibly because
it immediately follows a spoiler sentence and con-
tains an item-specific revelatory term (the char-
acter name ‘Hazel’). This indicates the current
model still needs to comprehend fine-grained sen-
tence dependencies, so that it can decide whether
to propagate or ignore the surrounding spoiler sig-
nals under different contexts.

Prob. Label Review Text

0.08 False This is not your typical teenage love story.
0.86 True In fact it doesn’t even have a happy ending.
0.70 False I have to say Hazel with all her pragmatism

and intelligence has won me over.
0.43 False She is on the exact opposite side of the spec-

trum than characters like the hideous Bella
Swan.

Table 3: An example review for the book The Fault in
Our Stars.

Inconsistent Standards of Spoiler Tags. We find
some self-reported labels are relatively controver-
sial, which also verifies our suspicion regarding
the subjectivity of spoiler tags. As shown in Ta-
ble 4, the last sentence was classified as ‘non-
spoiler’ by the language model, while reported by
the review author as the opposite, probably due to
its close connection to the previous spoiler sen-
tence. Note that such an example is difficult to jus-
tify even by human annotators. This motivates us
to consider spoiler detection as a ranking task in-
stead of conventional binary classification. In this
way sentences can be legitimately evaluated in the
same context (e.g. the same review document) re-
gardless of absolute thresholds. Besides the eval-
uation metrics, ranking losses can also be consid-
ered in future studies.

Prob. Label Review Text

0.01 False The writing is simplistic, a little more so than
befits even the 1st-person narrative of a 16-
year-old.

0.50 True One of things I liked best about this is hav-
ing a heroine who in addition to acting for
the cameras, also has to fake her affection to
someone who reciprocates far more than she
feels.

0.15 True I found it very relatable.

Table 4: An example review for the book The Hunger
Games.

6 Conclusions and Future Work

Our new dataset, analysis of spoiler language, and
positive results facilitate several directions for fu-
ture work. For example, revising spoiler contents
in a ‘non-spoiler’ way would be an interesting
language generation task. In addition to review
semantics, syntax information could be incorpo-
rated in a spoiler language model. The Goodreads
dataset may also serve as a powerful spoiler
source corpus. Models and knowledge learned on
this dataset could be transferred to other corpora
where spoiler annotations are limited or unavail-
able (e.g. detecting spoilers from tweets).



2610

References
Jordan L. Boyd-Graber, Kimberly Glasgow, and

Jackie Sauter Zajac. 2013. Spoiler alert: Machine
learning approaches to detect social media posts
with revelatory information. In ASIS&T Annual
Meeting.

Buru Chang, Hyunjae Kim, Raehyun Kim, Deahan
Kim, and Jaewoo Kang. 2018. A deep neural
spoiler detection model using a genre-aware atten-
tion mechanism. In PAKDD.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
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